-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcv.py
303 lines (245 loc) · 9.19 KB
/
cv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#!/usr/bin/env python
import sys
import argparse
import concurrent.futures
import logging
import os
import traceback
import cv2
from pyzbar.pyzbar import decode, ZBarSymbol
import numpy as np
import pandas as pd
from tqdm import tqdm
from tqdm.contrib.logging import logging_redirect_tqdm
from decoratorOperations import throttle
LOG_LEVELS = [
logging.CRITICAL,
logging.ERROR,
logging.WARNING,
logging.INFO,
logging.DEBUG,
]
LOG = logging.getLogger(__name__)
COLUMNS = ["Archivo","Acta","Nulos","Vacios","Maduro","Martinez","Bertucci","Brito","Ecarri","Fermin","Ceballos","Gonzalez","Marquez","Rausseo"]
CANDIDATES = {
"Maduro": ['PSUV', 'PCV', 'TUPAMARO', 'PPT', 'MSV', 'PODEMOS', 'MEP', 'APC', 'ORA', 'UPV', 'EV', 'PVV', 'PFV'],
"Martinez": ['AD', 'COPEI', 'MR', 'BR', 'DDP', 'UNE'],
"Bertucci": ['EL CAMBIO'],
"Brito": ['PV', 'VU', 'UVV', 'MPJ'],
"Ecarri": ['AP', 'MOVEV', 'CMC', 'FV', 'ALIANZA DEL LAPIZ', 'MIN UNIDAD'],
"Fermin": ['SPV'],
"Ceballos": ['VPA', 'AREPA'],
"Gonzalez": ['UNTC', 'MPV', 'MUD'],
"Marquez": ['CENTRADOS'],
"Rausseo": ['CONDE']
}
PARTIES = [p for c in CANDIDATES for p in CANDIDATES[c]]
def load_csv(fn, columns=COLUMNS):
try:
df = pd.read_csv(fn)
except Exception as e:
df = pd.DataFrame(columns=columns)
return df
qcd = cv2.QRCodeDetector()
def decode_cv2(img):
retval, result, points, straight_qrcode = qcd.detectAndDecodeMulti(img)
return result[0]
def decode_zbar(img):
barcodes = decode(img, symbols=[ZBarSymbol.QRCODE])
LOG.warning(barcodes)
return barcodes[0].data.decode('utf-8')
DECODERS = {
'zbar': decode_zbar,
'cv2': decode_cv2,
}
def nul_quirk(img):
return img
def to_gray(img):
return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
def threshold_adaptive(img):
return cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
def threshold_binary(img, args=[55, 255]):
dist, max = 55, 255
try:
dist = args[0]
max = args[1]
except:
pass
ret, img = cv2.threshold(img, 255 - int(dist), 255, cv2.THRESH_BINARY)
return img
def threshold_white(img, args=[1]):
dist, = args
if len(img.shape) > 2 and img.shape[2] > 1:
img = to_gray(img)
lo = np.array([255 - int(dist)])
hi = np.array([255])
mask = cv2.inRange(img, lo, hi)
img[mask>0] = (0)
return img
def resize(img, args=[2]):
rate, = args
shape = img.shape
half = cv2.resize(img, None, fx=1/rate, fy=1/rate, interpolation = cv2.INTER_CUBIC)
img = cv2.resize(half, None, fx=rate, fy=rate, interpolation = cv2.INTER_CUBIC)
return half
def quirk_crop(img):
h = img.shape[0]
w = img.shape[1]
c = img[h-int(w*1.1):h,0:w]
return c
QUIRKS = {
'none': nul_quirk,
'thresh_adaptive': threshold_adaptive,
'thresh_binary': threshold_binary,
'gray': to_gray,
'crop': quirk_crop,
'thresh_white': threshold_white,
'resize': resize,
}
DEFAULT_QUIRKS = ['none', 'gray', 'thresh_white', 'resize', 'thresh_binary', 'crop']
def show(img):
#img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
try:
pts = np.array(points[0], np.int32)
pts = pts.reshape((-1,1,2))
img = cv2.polylines(img, [pts], True, (0,0,255), 10)
except:
pass
cv2.imshow('show', img)
cv2.waitKey(0)
def process_img(filename, args):
logging.basicConfig(level=LOG_LEVELS[min(len(LOG_LEVELS) - 1, args.verbose)])
img = cv2.imread(filename)
if not isinstance(img, np.ndarray):
raise FileNotFoundError(f"file not found: {filename}")
quirks = {}
for d in args.decoders:
img_cache = img
for quirk in args.quirks:
LOG.debug(f"{filename}: trying DECODER {d}, QUIRK {quirk}")
q, a = None, None
try:
q, a = quirk.split(':')
try:
a = [float(v) for v in a.split(',')]
except:
pass
except Exception:
q = quirk
result = None
try:
proc_img = None
if a != None:
try:
proc_img = QUIRKS[q](img, float(a))
except:
proc_img = QUIRKS[q](img, a)
else:
proc_img = QUIRKS[q](img)
if args.non_destructive == True:
LOG.debug("non destructive mode")
else:
img = proc_img
if args.debug:
show(proc_img)
result = DECODERS[d](img)
a, r, n, v = result.split('!')
r = r.split(',')
votes = {p: int(v) for p, v in zip(PARTIES, r)}
votes = {c: sum([votes[p] for p in CANDIDATES[c]]) for c in CANDIDATES}
LOG.warning(votes)
del img
del img_cache
del proc_img
return([a, int(n), int(v)] + [votes[v] for v in votes])
except Exception as e:
LOG.warning(f"{filename}, decoder {d}, quirk {q} failed with {(result, e)}")
quirks[f"{d}:{q}"] = (result, e)
img = img_cache
del img
del img_cache
raise ValueError(f"Could not decode {filename}, tried {quirks}")
def sumi(s):
return sum([int(i) for i in s])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("filename", nargs="*")
parser.add_argument('-v', '--verbose', action="count", default=0)
parser.add_argument('-f', '--force', action="store_true")
parser.add_argument('-q', '--quirks', nargs="+", default=DEFAULT_QUIRKS)
parser.add_argument('-D', '--decoders', nargs="+", default=DECODERS)
parser.add_argument('-d', '--debug', action='store_true')
parser.add_argument('-c', '--csv', default="./decoded.csv")
parser.add_argument('-F', '--failed-csv', default="./failed.csv")
parser.add_argument('-2', '--duplicates-csv', default="./duplicate.csv")
parser.add_argument('-P', '--max-procs', default=32, type=int)
parser.add_argument('-n', '--non-destructive', action='store_true')
args = parser.parse_args()
if args.debug:
concurrent_executor = concurrent.futures.ProcessPoolExecutor
else:
concurrent_executor = concurrent.futures.ProcessPoolExecutor
logging.basicConfig(level=LOG_LEVELS[min(len(LOG_LEVELS) - 1, args.verbose)])
class stats:
success = 0
error = 0
df = load_csv(args.csv)
fdf = load_csv(args.failed_csv, columns=['Archivo'])
ddf = load_csv(args.duplicates_csv)
@throttle(2)
def write_df():
df.to_csv(args.csv, index = False)
@throttle(2)
def write_fdf():
fdf.to_csv(args.failed_csv, index = False)
@throttle(2)
def write_ddf():
ddf.to_csv(args.duplicates_csv, index = False)
to_process = []
solved = df.to_records()['Archivo']
dups = ddf.to_records()['Archivo']
if os.path.isdir(args.filename[0]):
args.filename = [os.path.join(args.filename[0], f) for f in os.listdir(args.filename[0])]
if args.force:
to_process = args.filename
else:
tqdm.write("trimming solved files")
for fn in tqdm(args.filename):
if not fn in solved and not fn in dups:
to_process.append(fn)
skipped = len(args.filename) - len(to_process)
with tqdm(total=len(to_process)) as bar:
with logging_redirect_tqdm():
with concurrent_executor(max_workers=args.max_procs) as executor:
future_to_result = {
executor.submit(process_img, filename, args) : filename for filename in to_process}
for future in concurrent.futures.as_completed(future_to_result):
filename = future_to_result[future]
try:
result = future.result()
except Exception as e:
traceback.print_exception(e)
LOG.info('%r generated an exception: %s' % (filename, e))
if fdf.loc[fdf['Archivo'] == filename].empty:
fdf.loc[len(fdf)] = [filename]
write_fdf()
stats.error +=1
else:
row = [filename] + result
acta = result[0]
try:
if df.loc[(df['Acta'] == acta)].empty:
df.loc[len(df)] = row
else:
ddf = pd.concat([ddf, df.loc[(df['Acta'] == acta)]])
ddf.loc[len(ddf)] = row
df.loc[(df['Acta'] == result[0])] = row
write_ddf()
except Exception as e:
traceback.print_exception(e)
write_df()
stats.success +=1
bar.update(1)
bar.set_description(f"OK: {stats.success + skipped}, N: {stats.success}, S: {skipped}, E: {stats.error}")
print("all done")
df.to_csv(args.csv, index = False)