-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpenrose.c
894 lines (802 loc) · 26.4 KB
/
penrose.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
/*
* Generate Penrose tilings via combinatorial coordinates.
*
* For general explanation of the algorithm:
* https://www.chiark.greenend.org.uk/~sgtatham/quasiblog/aperiodic-tilings/
*
* I use exactly the same indexing system here that's described in the
* article. For the P2 tiling, acute isosceles triangles (half-kites)
* are assigned letters A,B, and obtuse ones (half-darts) U,V; for P3,
* acute triangles (half of a thin rhomb) are C,D and obtuse ones
* (half a thick rhomb) are X,Y. Edges of all triangles are indexed
* anticlockwise around the triangle, with 0 being the base and 1,2
* being the two equal legs.
*/
#include <assert.h>
#include <stddef.h>
#include <string.h>
#include "puzzles.h"
#include "penrose.h"
#include "penrose-internal.h"
#include "tree234.h"
bool penrose_valid_letter(char c, int which)
{
switch (c) {
case 'A': case 'B': case 'U': case 'V':
return which == PENROSE_P2;
case 'C': case 'D': case 'X': case 'Y':
return which == PENROSE_P3;
default:
return false;
}
}
/*
* Result of attempting a transition within the coordinate system.
* INTERNAL means we've moved to a different child of the same parent,
* so the 'internal' substructure gives the type of the new triangle
* and which edge of it we came in through; EXTERNAL means we've moved
* out of the parent entirely, and the 'external' substructure tells
* us which edge of the parent triangle we left by, and if it's
* divided in two, which end of that edge (-1 for the left end or +1
* for the right end). If the parent edge is undivided, end == 0.
*
* The type FAIL _shouldn't_ ever come up! It occurs if you try to
* compute an incoming transition with an illegal value of 'end' (i.e.
* having the wrong idea of whether the edge is divided), or if you
* refer to a child triangle type that doesn't exist in that parent.
* If it ever happens in the production code then an assertion will
* fail. But it might be useful to other users of the same code.
*/
typedef struct TransitionResult {
enum { INTERNAL, EXTERNAL, FAIL } type;
union {
struct {
char new_child;
unsigned char new_edge;
} internal;
struct {
unsigned char parent_edge;
signed char end;
} external;
} u;
} TransitionResult;
/* Construction function to make an INTERNAL-type TransitionResult */
static inline TransitionResult internal(char new_child, unsigned new_edge)
{
TransitionResult tr;
tr.type = INTERNAL;
tr.u.internal.new_child = new_child;
tr.u.internal.new_edge = new_edge;
return tr;
}
/* Construction function to make an EXTERNAL-type TransitionResult */
static inline TransitionResult external(unsigned parent_edge, int end)
{
TransitionResult tr;
tr.type = EXTERNAL;
tr.u.external.parent_edge = parent_edge;
tr.u.external.end = end;
return tr;
}
/* Construction function to make a FAIL-type TransitionResult */
static inline TransitionResult fail(void)
{
TransitionResult tr;
tr.type = FAIL;
return tr;
}
/*
* Compute a transition out of a triangle. Can return either INTERNAL
* or EXTERNAL types (or FAIL if it gets invalid data).
*/
static TransitionResult transition(char parent, char child, unsigned edge)
{
switch (parent) {
case 'A':
switch (child) {
case 'A':
switch (edge) {
case 0: return external(2, -1);
case 1: return external(0, 0);
case 2: return internal('B', 1);
}
case 'B':
switch (edge) {
case 0: return internal('U', 1);
case 1: return internal('A', 2);
case 2: return external(1, +1);
}
case 'U':
switch (edge) {
case 0: return external(2, +1);
case 1: return internal('B', 0);
case 2: return external(1, -1);
}
default:
return fail();
}
case 'B':
switch (child) {
case 'A':
switch (edge) {
case 0: return internal('V', 2);
case 1: return external(2, -1);
case 2: return internal('B', 1);
}
case 'B':
switch (edge) {
case 0: return external(1, +1);
case 1: return internal('A', 2);
case 2: return external(0, 0);
}
case 'V':
switch (edge) {
case 0: return external(1, -1);
case 1: return external(2, +1);
case 2: return internal('A', 0);
}
default:
return fail();
}
case 'U':
switch (child) {
case 'B':
switch (edge) {
case 0: return internal('U', 1);
case 1: return external(2, 0);
case 2: return external(0, +1);
}
case 'U':
switch (edge) {
case 0: return external(1, 0);
case 1: return internal('B', 0);
case 2: return external(0, -1);
}
default:
return fail();
}
case 'V':
switch (child) {
case 'A':
switch (edge) {
case 0: return internal('V', 2);
case 1: return external(0, -1);
case 2: return external(1, 0);
}
case 'V':
switch (edge) {
case 0: return external(2, 0);
case 1: return external(0, +1);
case 2: return internal('A', 0);
}
default:
return fail();
}
case 'C':
switch (child) {
case 'C':
switch (edge) {
case 0: return external(1, +1);
case 1: return internal('Y', 1);
case 2: return external(0, 0);
}
case 'Y':
switch (edge) {
case 0: return external(2, 0);
case 1: return internal('C', 1);
case 2: return external(1, -1);
}
default:
return fail();
}
case 'D':
switch (child) {
case 'D':
switch (edge) {
case 0: return external(2, -1);
case 1: return external(0, 0);
case 2: return internal('X', 2);
}
case 'X':
switch (edge) {
case 0: return external(1, 0);
case 1: return external(2, +1);
case 2: return internal('D', 2);
}
default:
return fail();
}
case 'X':
switch (child) {
case 'C':
switch (edge) {
case 0: return external(2, +1);
case 1: return internal('Y', 1);
case 2: return internal('X', 1);
}
case 'X':
switch (edge) {
case 0: return external(1, 0);
case 1: return internal('C', 2);
case 2: return external(0, -1);
}
case 'Y':
switch (edge) {
case 0: return external(0, +1);
case 1: return internal('C', 1);
case 2: return external(2, -1);
}
default:
return fail();
}
case 'Y':
switch (child) {
case 'D':
switch (edge) {
case 0: return external(1, -1);
case 1: return internal('Y', 2);
case 2: return internal('X', 2);
}
case 'X':
switch (edge) {
case 0: return external(0, -1);
case 1: return external(1, +1);
case 2: return internal('D', 2);
}
case 'Y':
switch (edge) {
case 0: return external(2, 0);
case 1: return external(0, +1);
case 2: return internal('D', 1);
}
default:
return fail();
}
default:
return fail();
}
}
/*
* Compute a transition into a parent triangle, after the above
* function reported an EXTERNAL transition out of a neighbouring
* parent and we had to recurse. Because we're coming inwards, this
* should always return an INTERNAL TransitionResult (or FAIL if it
* gets invalid data).
*/
static TransitionResult transition_in(char parent, unsigned edge, int end)
{
#define EDGEEND(edge, end) (3 * (edge) + 1 + (end))
switch (parent) {
case 'A':
switch (EDGEEND(edge, end)) {
case EDGEEND(0, 0): return internal('A', 1);
case EDGEEND(1, -1): return internal('B', 2);
case EDGEEND(1, +1): return internal('U', 2);
case EDGEEND(2, -1): return internal('U', 0);
case EDGEEND(2, +1): return internal('A', 0);
default:
return fail();
}
case 'B':
switch (EDGEEND(edge, end)) {
case EDGEEND(0, 0): return internal('B', 2);
case EDGEEND(1, -1): return internal('B', 0);
case EDGEEND(1, +1): return internal('V', 0);
case EDGEEND(2, -1): return internal('V', 1);
case EDGEEND(2, +1): return internal('A', 1);
default:
return fail();
}
case 'U':
switch (EDGEEND(edge, end)) {
case EDGEEND(0, -1): return internal('B', 2);
case EDGEEND(0, +1): return internal('U', 2);
case EDGEEND(1, 0): return internal('U', 0);
case EDGEEND(2, 0): return internal('B', 1);
default:
return fail();
}
case 'V':
switch (EDGEEND(edge, end)) {
case EDGEEND(0, -1): return internal('V', 1);
case EDGEEND(0, +1): return internal('A', 1);
case EDGEEND(1, 0): return internal('A', 2);
case EDGEEND(2, 0): return internal('V', 0);
default:
return fail();
}
case 'C':
switch (EDGEEND(edge, end)) {
case EDGEEND(0, 0): return internal('C', 2);
case EDGEEND(1, -1): return internal('C', 0);
case EDGEEND(1, +1): return internal('Y', 2);
case EDGEEND(2, 0): return internal('Y', 0);
default:
return fail();
}
case 'D':
switch (EDGEEND(edge, end)) {
case EDGEEND(0, 0): return internal('D', 1);
case EDGEEND(1, 0): return internal('X', 0);
case EDGEEND(2, -1): return internal('X', 1);
case EDGEEND(2, +1): return internal('D', 0);
default:
return fail();
}
case 'X':
switch (EDGEEND(edge, end)) {
case EDGEEND(0, -1): return internal('Y', 0);
case EDGEEND(0, +1): return internal('X', 2);
case EDGEEND(1, 0): return internal('X', 0);
case EDGEEND(2, -1): return internal('C', 0);
case EDGEEND(2, +1): return internal('Y', 2);
default:
return fail();
}
case 'Y':
switch (EDGEEND(edge, end)) {
case EDGEEND(0, +1): return internal('X', 0);
case EDGEEND(0, -1): return internal('Y', 1);
case EDGEEND(1, -1): return internal('X', 1);
case EDGEEND(1, +1): return internal('D', 0);
case EDGEEND(2, 0): return internal('Y', 0);
default:
return fail();
}
default:
return fail();
}
#undef EDGEEND
}
PenroseCoords *penrose_coords_new(void)
{
PenroseCoords *pc = snew(PenroseCoords);
pc->nc = pc->csize = 0;
pc->c = NULL;
return pc;
}
void penrose_coords_free(PenroseCoords *pc)
{
if (pc) {
sfree(pc->c);
sfree(pc);
}
}
void penrose_coords_make_space(PenroseCoords *pc, size_t size)
{
if (pc->csize < size) {
pc->csize = pc->csize * 5 / 4 + 16;
if (pc->csize < size)
pc->csize = size;
pc->c = sresize(pc->c, pc->csize, char);
}
}
PenroseCoords *penrose_coords_copy(PenroseCoords *pc_in)
{
PenroseCoords *pc_out = penrose_coords_new();
penrose_coords_make_space(pc_out, pc_in->nc);
memcpy(pc_out->c, pc_in->c, pc_in->nc * sizeof(*pc_out->c));
pc_out->nc = pc_in->nc;
return pc_out;
}
/*
* The main recursive function for computing the next triangle's
* combinatorial coordinates.
*/
static void penrosectx_step_recurse(
PenroseContext *ctx, PenroseCoords *pc, size_t depth,
unsigned edge, unsigned *outedge)
{
TransitionResult tr;
penrosectx_extend_coords(ctx, pc, depth+2);
/* Look up the transition out of the starting triangle */
tr = transition(pc->c[depth+1], pc->c[depth], edge);
/* If we've left the parent triangle, recurse to find out what new
* triangle we've landed in at the next size up, and then call
* transition_in to find out which child of that parent we're
* going to */
if (tr.type == EXTERNAL) {
unsigned parent_outedge;
penrosectx_step_recurse(
ctx, pc, depth+1, tr.u.external.parent_edge, &parent_outedge);
tr = transition_in(pc->c[depth+1], parent_outedge, tr.u.external.end);
}
/* Now we should definitely have ended up in a child of the
* (perhaps rewritten) parent triangle */
assert(tr.type == INTERNAL);
pc->c[depth] = tr.u.internal.new_child;
*outedge = tr.u.internal.new_edge;
}
void penrosectx_step(PenroseContext *ctx, PenroseCoords *pc,
unsigned edge, unsigned *outedge)
{
/* Allow outedge to be NULL harmlessly, just in case */
unsigned dummy_outedge;
if (!outedge)
outedge = &dummy_outedge;
penrosectx_step_recurse(ctx, pc, 0, edge, outedge);
}
static Point penrose_triangle_post_edge(char c, unsigned edge)
{
static const Point acute_post_edge[3] = {
{{-1, 1, 0, 1}}, /* phi * t^3 */
{{-1, 1, -1, 1}}, /* t^4 */
{{-1, 1, 0, 0}}, /* 1/phi * t^3 */
};
static const Point obtuse_post_edge[3] = {
{{0, -1, 1, 0}}, /* 1/phi * t^4 */
{{0, 0, 1, 0}}, /* t^2 */
{{-1, 0, 0, 1}}, /* phi * t^4 */
};
switch (c) {
case 'A': case 'B': case 'C': case 'D':
return acute_post_edge[edge];
default: /* case 'U': case 'V': case 'X': case 'Y': */
return obtuse_post_edge[edge];
}
}
void penrose_place(PenroseTriangle *tri, Point u, Point v, int index_of_u)
{
unsigned i;
Point here = u, delta = point_sub(v, u);
for (i = 0; i < 3; i++) {
unsigned edge = (index_of_u + i) % 3;
tri->vertices[edge] = here;
here = point_add(here, delta);
delta = point_mul(delta, penrose_triangle_post_edge(
tri->pc->c[0], edge));
}
}
void penrose_free(PenroseTriangle *tri)
{
penrose_coords_free(tri->pc);
sfree(tri);
}
static bool penrose_relative_probability(char c)
{
/* Penrose tile probability ratios are always phi, so we can
* approximate that very well using two consecutive Fibonacci
* numbers */
switch (c) {
case 'A': case 'B': case 'X': case 'Y':
return 165580141;
case 'C': case 'D': case 'U': case 'V':
return 102334155;
default:
return 0;
}
}
static char penrose_choose_random(const char *possibilities, random_state *rs)
{
const char *p;
unsigned long value, limit = 0;
for (p = possibilities; *p; p++)
limit += penrose_relative_probability(*p);
value = random_upto(rs, limit);
for (p = possibilities; *p; p++) {
unsigned long curr = penrose_relative_probability(*p);
if (value < curr)
return *p;
value -= curr;
}
assert(false && "Probability overflow!");
return possibilities[0];
}
static const char *penrose_starting_tiles(int which)
{
return which == PENROSE_P2 ? "ABUV" : "CDXY";
}
static const char *penrose_valid_parents(char tile)
{
switch (tile) {
case 'A': return "ABV";
case 'B': return "ABU";
case 'U': return "AU";
case 'V': return "BV";
case 'C': return "CX";
case 'D': return "DY";
case 'X': return "DXY";
case 'Y': return "CXY";
default: return NULL;
}
}
void penrosectx_init_random(PenroseContext *ctx, random_state *rs, int which)
{
ctx->rs = rs;
ctx->must_free_rs = false;
ctx->prototype = penrose_coords_new();
penrose_coords_make_space(ctx->prototype, 1);
ctx->prototype->c[0] = penrose_choose_random(
penrose_starting_tiles(which), rs);
ctx->prototype->nc = 1;
ctx->start_vertex = random_upto(rs, 3);
ctx->orientation = random_upto(rs, 10);
}
void penrosectx_init_from_params(
PenroseContext *ctx, const struct PenrosePatchParams *ps)
{
size_t i;
ctx->rs = NULL;
ctx->must_free_rs = false;
ctx->prototype = penrose_coords_new();
penrose_coords_make_space(ctx->prototype, ps->ncoords);
for (i = 0; i < ps->ncoords; i++)
ctx->prototype->c[i] = ps->coords[i];
ctx->prototype->nc = ps->ncoords;
ctx->start_vertex = ps->start_vertex;
ctx->orientation = ps->orientation;
}
void penrosectx_cleanup(PenroseContext *ctx)
{
if (ctx->must_free_rs)
random_free(ctx->rs);
penrose_coords_free(ctx->prototype);
}
PenroseCoords *penrosectx_initial_coords(PenroseContext *ctx)
{
return penrose_coords_copy(ctx->prototype);
}
void penrosectx_extend_coords(PenroseContext *ctx, PenroseCoords *pc,
size_t n)
{
if (ctx->prototype->nc < n) {
penrose_coords_make_space(ctx->prototype, n);
while (ctx->prototype->nc < n) {
if (!ctx->rs) {
/*
* For safety, similarly to spectre.c, we respond to a
* lack of available random_state by making a
* deterministic one.
*/
ctx->rs = random_new("dummy", 5);
ctx->must_free_rs = true;
}
ctx->prototype->c[ctx->prototype->nc] = penrose_choose_random(
penrose_valid_parents(ctx->prototype->c[ctx->prototype->nc-1]),
ctx->rs);
ctx->prototype->nc++;
}
}
penrose_coords_make_space(pc, n);
while (pc->nc < n) {
pc->c[pc->nc] = ctx->prototype->c[pc->nc];
pc->nc++;
}
}
static Point penrose_triangle_edge_0_length(char c)
{
static const Point one = {{ 1, 0, 0, 0 }};
static const Point phi = {{ 1, 0, 1, -1 }};
static const Point invphi = {{ 0, 0, 1, -1 }};
switch (c) {
/* P2 tiling: unit-length edges are the long edges, i.e. edges
* 1,2 of AB and edge 0 of UV. So AB have edge 0 short. */
case 'A': case 'B':
return invphi;
case 'U': case 'V':
return one;
/* P3 tiling: unit-length edges are edges 1,2 of everything,
* so CD have edge 0 short and XY have it long. */
case 'C': case 'D':
return invphi;
default: /* case 'X': case 'Y': */
return phi;
}
}
PenroseTriangle *penrose_initial(PenroseContext *ctx)
{
char type = ctx->prototype->c[0];
Point origin = {{ 0, 0, 0, 0 }};
Point edge0 = penrose_triangle_edge_0_length(type);
Point negoffset;
size_t i;
PenroseTriangle *tri = snew(PenroseTriangle);
/* Orient the triangle by deciding what vector edge #0 should traverse */
edge0 = point_mul(edge0, point_rot(ctx->orientation));
/* Place the triangle at an arbitrary position, in that orientation */
tri->pc = penrose_coords_copy(ctx->prototype);
penrose_place(tri, origin, edge0, 0);
/* Now translate so that the appropriate vertex is at the origin */
negoffset = tri->vertices[ctx->start_vertex];
for (i = 0; i < 3; i++)
tri->vertices[i] = point_sub(tri->vertices[i], negoffset);
return tri;
}
PenroseTriangle *penrose_adjacent(PenroseContext *ctx,
const PenroseTriangle *src_tri,
unsigned src_edge, unsigned *dst_edge_out)
{
unsigned dst_edge;
PenroseTriangle *dst_tri = snew(PenroseTriangle);
dst_tri->pc = penrose_coords_copy(src_tri->pc);
penrosectx_step(ctx, dst_tri->pc, src_edge, &dst_edge);
penrose_place(dst_tri, src_tri->vertices[(src_edge+1) % 3],
src_tri->vertices[src_edge], dst_edge);
if (dst_edge_out)
*dst_edge_out = dst_edge;
return dst_tri;
}
static int penrose_cmp(void *av, void *bv)
{
PenroseTriangle *a = (PenroseTriangle *)av, *b = (PenroseTriangle *)bv;
size_t i, j;
/* We should only ever need to compare the first two vertices of
* any triangle, because those force the rest */
for (i = 0; i < 2; i++) {
for (j = 0; j < 4; j++) {
int ac = a->vertices[i].coeffs[j], bc = b->vertices[i].coeffs[j];
if (ac < bc)
return -1;
if (ac > bc)
return +1;
}
}
return 0;
}
static unsigned penrose_sibling_edge_index(char c)
{
switch (c) {
case 'A': case 'U': return 2;
case 'B': case 'V': return 1;
default: return 0;
}
}
void penrosectx_generate(
PenroseContext *ctx,
bool (*inbounds)(void *inboundsctx,
const PenroseTriangle *tri), void *inboundsctx,
void (*tile)(void *tilectx, const Point *vertices), void *tilectx)
{
tree234 *placed = newtree234(penrose_cmp);
PenroseTriangle *qhead = NULL, *qtail = NULL;
{
PenroseTriangle *tri = penrose_initial(ctx);
add234(placed, tri);
tri->next = NULL;
tri->reported = false;
if (inbounds(inboundsctx, tri))
qhead = qtail = tri;
}
while (qhead) {
PenroseTriangle *tri = qhead;
unsigned edge;
unsigned sibling_edge = penrose_sibling_edge_index(tri->pc->c[0]);
for (edge = 0; edge < 3; edge++) {
PenroseTriangle *new_tri, *found_tri;
new_tri = penrose_adjacent(ctx, tri, edge, NULL);
if (!inbounds(inboundsctx, new_tri)) {
penrose_free(new_tri);
continue;
}
found_tri = find234(placed, new_tri, NULL);
if (found_tri) {
if (edge == sibling_edge && !tri->reported &&
!found_tri->reported) {
/*
* found_tri and tri are opposite halves of the
* same tile; both are in the tree, and haven't
* yet been reported as a completed tile.
*/
unsigned new_sibling_edge = penrose_sibling_edge_index(
found_tri->pc->c[0]);
Point tilevertices[4] = {
tri->vertices[(sibling_edge + 1) % 3],
tri->vertices[(sibling_edge + 2) % 3],
found_tri->vertices[(new_sibling_edge + 1) % 3],
found_tri->vertices[(new_sibling_edge + 2) % 3],
};
tile(tilectx, tilevertices);
tri->reported = true;
found_tri->reported = true;
}
penrose_free(new_tri);
continue;
}
add234(placed, new_tri);
qtail->next = new_tri;
qtail = new_tri;
new_tri->next = NULL;
new_tri->reported = false;
}
qhead = qhead->next;
}
{
PenroseTriangle *tri;
while ((tri = delpos234(placed, 0)) != NULL)
penrose_free(tri);
freetree234(placed);
}
}
const char *penrose_tiling_params_invalid(
const struct PenrosePatchParams *params, int which)
{
size_t i;
if (params->ncoords == 0)
return "expected at least one coordinate";
for (i = 0; i < params->ncoords; i++) {
if (!penrose_valid_letter(params->coords[i], which))
return "invalid coordinate letter";
if (i > 0 && !strchr(penrose_valid_parents(params->coords[i-1]),
params->coords[i]))
return "invalid pair of consecutive coordinates";
}
return NULL;
}
struct PenroseOutputCtx {
int xoff, yoff;
Coord xmin, xmax, ymin, ymax;
penrose_tile_callback_fn external_cb;
void *external_cbctx;
};
static bool inbounds(void *vctx, const PenroseTriangle *tri)
{
struct PenroseOutputCtx *octx = (struct PenroseOutputCtx *)vctx;
size_t i;
for (i = 0; i < 3; i++) {
Coord x = point_x(tri->vertices[i]);
Coord y = point_y(tri->vertices[i]);
if (coord_cmp(x, octx->xmin) < 0 || coord_cmp(x, octx->xmax) > 0 ||
coord_cmp(y, octx->ymin) < 0 || coord_cmp(y, octx->ymax) > 0)
return false;
}
return true;
}
static void null_output_tile(void *vctx, const Point *vertices)
{
}
static void really_output_tile(void *vctx, const Point *vertices)
{
struct PenroseOutputCtx *octx = (struct PenroseOutputCtx *)vctx;
size_t i;
int coords[16];
for (i = 0; i < 4; i++) {
Coord x = point_x(vertices[i]);
Coord y = point_y(vertices[i]);
coords[4*i + 0] = x.c1 + octx->xoff;
coords[4*i + 1] = x.cr5;
coords[4*i + 2] = y.c1 + octx->yoff;
coords[4*i + 3] = y.cr5;
}
octx->external_cb(octx->external_cbctx, coords);
}
static void penrose_set_bounds(struct PenroseOutputCtx *octx, int w, int h)
{
octx->xoff = w/2;
octx->yoff = h/2;
octx->xmin.c1 = -octx->xoff;
octx->xmax.c1 = -octx->xoff + w;
octx->ymin.c1 = octx->yoff - h;
octx->ymax.c1 = octx->yoff;
octx->xmin.cr5 = 0;
octx->xmax.cr5 = 0;
octx->ymin.cr5 = 0;
octx->ymax.cr5 = 0;
}
void penrose_tiling_randomise(struct PenrosePatchParams *params, int which,
int w, int h, random_state *rs)
{
PenroseContext ctx[1];
struct PenroseOutputCtx octx[1];
penrose_set_bounds(octx, w, h);
penrosectx_init_random(ctx, rs, which);
penrosectx_generate(ctx, inbounds, octx, null_output_tile, NULL);
params->orientation = ctx->orientation;
params->start_vertex = ctx->start_vertex;
params->ncoords = ctx->prototype->nc;
params->coords = snewn(params->ncoords, char);
memcpy(params->coords, ctx->prototype->c, params->ncoords);
penrosectx_cleanup(ctx);
}
void penrose_tiling_generate(
const struct PenrosePatchParams *params, int w, int h,
penrose_tile_callback_fn cb, void *cbctx)
{
PenroseContext ctx[1];
struct PenroseOutputCtx octx[1];
penrose_set_bounds(octx, w, h);
octx->external_cb = cb;
octx->external_cbctx = cbctx;
penrosectx_init_from_params(ctx, params);
penrosectx_generate(ctx, inbounds, octx, really_output_tile, octx);
penrosectx_cleanup(ctx);
}