-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhat-internal.h
271 lines (240 loc) · 8.9 KB
/
hat-internal.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*
* Internal definitions for the hat.c tiling generator, shared between
* hat.c itself and hat-test.c.
*/
#include "puzzles.h"
/*
* Coordinate system:
*
* The output of this code lives on the tiling known to grid.c as
* 'Kites', which can be viewed as a tiling of hexagons each of which
* is subdivided into six kites sharing their pointy vertex, or
* (equivalently) a tiling of equilateral triangles each subdivided
* into three kits sharing their blunt vertex.
*
* We express coordinates in this system relative to the basis (1, r)
* where r = (1 + sqrt(3)i) / 2 is a primitive 6th root of unity. This
* gives us a system in which two integer coordinates can address any
* grid point, provided we scale up so that the side length of the
* equilateral triangles in the tiling is 6.
*/
typedef struct Point {
int x, y; /* represents x + yr */
} Point;
static inline Point pointscale(int scale, Point a)
{
Point r = { scale * a.x, scale * a.y };
return r;
}
static inline Point pointadd(Point a, Point b)
{
Point r = { a.x + b.x, a.y + b.y };
return r;
}
/*
* We identify a single kite by the coordinates of its four vertices.
* This allows us to construct the coordinates of an adjacent kite by
* taking affine transformations of the original kite's vertices.
*
* This is a useful way to do it because it means that if you reflect
* the kite (by swapping its left and right vertices) then these
* transformations also perform in a reflected way. This will be
* useful in the code below that outputs the coordinates of each hat,
* because this way it can work by walking around its 8 kites using a
* fixed set of steps, and if the hat is reflected, then we just
* reflect the starting kite before doing that, and everything still
* works.
*/
typedef struct Kite {
Point centre, left, right, outer;
} Kite;
static inline Kite kite_left(Kite k)
{
Kite r;
r.centre = k.centre;
r.right = k.left;
r.outer = pointadd(pointscale(2, k.left), pointscale(-1, k.outer));
r.left = pointadd(pointadd(k.centre, k.left), pointscale(-1, k.right));
return r;
}
static inline Kite kite_right(Kite k)
{
Kite r;
r.centre = k.centre;
r.left = k.right;
r.outer = pointadd(pointscale(2, k.right), pointscale(-1, k.outer));
r.right = pointadd(pointadd(k.centre, k.right), pointscale(-1, k.left));
return r;
}
static inline Kite kite_forward_left(Kite k)
{
Kite r;
r.outer = k.outer;
r.right = k.left;
r.centre = pointadd(pointscale(2, k.left), pointscale(-1, k.centre));
r.left = pointadd(pointadd(k.right, k.left), pointscale(-1, k.centre));
return r;
}
static inline Kite kite_forward_right(Kite k)
{
Kite r;
r.outer = k.outer;
r.left = k.right;
r.centre = pointadd(pointscale(2, k.right), pointscale(-1, k.centre));
r.right = pointadd(pointadd(k.left, k.right), pointscale(-1, k.centre));
return r;
}
typedef enum KiteStep { KS_LEFT, KS_RIGHT, KS_F_LEFT, KS_F_RIGHT } KiteStep;
static inline Kite kite_step(Kite k, KiteStep step)
{
switch (step) {
case KS_LEFT: return kite_left(k);
case KS_RIGHT: return kite_right(k);
case KS_F_LEFT: return kite_forward_left(k);
default /* case KS_F_RIGHT */: return kite_forward_right(k);
}
}
/*
* Functiond to enumerate the kites in a rectangular region, in a
* serpentine-raster fashion so that every kite delivered shares an
* edge with a recent previous one.
*/
#define KE_NKEEP 3
typedef struct KiteEnum {
/* Fields private to the enumerator */
int state;
int x, y, w, h;
unsigned curr_index;
/* Fields the client can legitimately read out */
Kite *curr;
Kite recent[KE_NKEEP];
unsigned last_index;
KiteStep last_step; /* step that got curr from recent[last_index] */
} KiteEnum;
void hat_kiteenum_first(KiteEnum *s, int w, int h);
bool hat_kiteenum_next(KiteEnum *s);
/*
* Assorted useful definitions.
*/
typedef enum TileType { TT_H, TT_T, TT_P, TT_F, TT_KITE, TT_HAT } TileType;
static const char tilechars[] = "HTPF";
#define HAT_KITES 8 /* number of kites in a hat */
#define MT_MAXEXPAND 13 /* largest number of metatiles in any expansion */
/*
* Definitions for the autogenerated hat-tables.h header file that
* defines all the lookup tables.
*/
typedef struct KitemapEntry {
int kite, hat, meta; /* all -1 if impossible */
} KitemapEntry;
typedef struct MetamapEntry {
int meta, meta2;
} MetamapEntry;
static inline size_t kitemap_index(KiteStep step, unsigned kite,
unsigned hat, unsigned meta)
{
return step + 4 * (kite + 8 * (hat + 4 * meta));
}
static inline size_t metamap_index(unsigned meta, unsigned meta2)
{
return meta2 * MT_MAXEXPAND + meta;
}
/*
* Coordinate system for tracking kites within a randomly selected
* part of the recursively expanded hat tiling.
*
* HatCoords will store an array of HatCoord, in little-endian
* arrangement. So hc->c[0] will always have type TT_KITE and index a
* single kite within a hat; hc->c[1] will have type TT_HAT and index
* a hat within a first-order metatile; hc->c[2] will be the smallest
* metatile containing this hat, and hc->c[3, 4, 5, ...] will be
* higher-order metatiles as needed.
*
* The last coordinate stored, hc->c[hc->nc-1], will have a tile type
* but no index (represented by index==-1). This means "we haven't
* decided yet what this level of metatile needs to be". If we need to
* refer to this level during the hatctx_step algorithm, we make it up
* at random, based on a table of what metatiles each type can
* possibly be part of, at what index.
*/
typedef struct HatCoord {
int index; /* index within that tile, or -1 if not yet known */
TileType type; /* type of this tile */
} HatCoord;
typedef struct HatCoords {
HatCoord *c;
size_t nc, csize;
} HatCoords;
HatCoords *hat_coords_new(void);
void hat_coords_free(HatCoords *hc);
void hat_coords_make_space(HatCoords *hc, size_t size);
HatCoords *hat_coords_copy(HatCoords *hc_in);
#ifdef HAT_COORDS_DEBUG
static inline void hat_coords_debug(const char *prefix, HatCoords *hc,
const char *suffix)
{
const char *sep = "";
static const char *const types[] = {"H","T","P","F","kite","hat"};
fputs(prefix, stderr);
for (size_t i = 0; i < hc->nc; i++) {
fprintf(stderr, "%s %s ", sep, types[hc->c[i].type]);
sep = " .";
if (hc->c[i].index == -1)
fputs("?", stderr);
else
fprintf(stderr, "%d", hc->c[i].index);
}
fputs(suffix, stderr);
}
#else
#define hat_coords_debug(p,c,s) ((void)0)
#endif
/*
* HatContext is the shared context of a whole run of the algorithm.
* Its 'prototype' HatCoords object represents the coordinates of the
* starting kite, and is extended as necessary; any other HatCoord
* that needs extending will copy the higher-order values from
* ctx->prototype as needed, so that once each choice has been made,
* it remains consistent.
*
* When we're inventing a random piece of tiling in the first place,
* we append to ctx->prototype by choosing a random (but legal)
* higher-level metatile for the current topmost one to turn out to be
* part of. When we're replaying a generation whose parameters are
* already stored, we don't have a random_state, and we make fixed
* decisions if not enough coordinates were provided.
*
* (Of course another approach would be to reject grid descriptions
* that didn't define enough coordinates! But that would involve a
* whole extra iteration over the whole grid region just for
* validation, and that seems like more timewasting than really
* needed. So we tolerate short descriptions, and do something
* deterministic with them.)
*/
typedef struct HatContext {
random_state *rs;
HatCoords *prototype;
} HatContext;
void hatctx_init_random(HatContext *ctx, random_state *rs);
void hatctx_cleanup(HatContext *ctx);
HatCoords *hatctx_initial_coords(HatContext *ctx);
void hatctx_extend_coords(HatContext *ctx, HatCoords *hc, size_t n);
HatCoords *hatctx_step(HatContext *ctx, HatCoords *hc_in, KiteStep step);
/*
* Subroutine of hat_tiling_generate, called for each kite in the grid
* as we iterate over it, to decide whether to generate an output hat
* and pass it to the client. Exposed in this header file so that
* hat-test can reuse it.
*
* We do this by starting from kite #0 of each hat, and tracing round
* the boundary. If the whole boundary is within the caller's bounding
* region, we return it; if it goes off the edge, we don't.
*
* (Of course, every hat we _do_ want to return will have all its
* kites inside the rectangle, so its kite #0 will certainly be caught
* by this iteration.)
*/
typedef void (*internal_hat_callback_fn)(void *ctx, Kite kite0, HatCoords *hc,
int *coords);
void maybe_report_hat(int w, int h, Kite kite, HatCoords *hc,
internal_hat_callback_fn cb, void *cbctx);