-
-
Notifications
You must be signed in to change notification settings - Fork 255
/
Copy pathvisualize_retrieval_demo.m
executable file
·224 lines (207 loc) · 7.59 KB
/
visualize_retrieval_demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
% Version control:
% V1.5 2014/09/28
% V1.4 2014/09/16
% V1.3 2014/08/21
% V1.2 2014/08/16
% V1.1 2013/09/26
% V1.0 2013/07/22
% Author:
% yongyuan.name
close all; clear all; clc;
addpath('./utils/');
%db_name = 'CIFAR10';
%db_name = 'CALTECH256';
db_name = 'CALTECH256CNN';
param.pos = [0:1000:10000];
loopnbits = [64];
% for CALTECH256, ID=10,14, 16=airplane
query_ID = 25; % 19 21 query_ID ranges from 1 to 1000 in cifar10 (8 retrieves horse, 13 retrieves car, 15 horses)
param.numRetrieval = 25; % Number of returned retrieval images
param.query_ID = query_ID;
param.choice = 'visualization';
%hashmethods = {'Our Method'};
hashmethods = {'Our Method', 'SELVE', 'LSH', 'SH', 'SKLSH', 'DSH', 'SpH', 'CBE-opt', 'PCAH'};
%hashmethods = {'PCA-ITQ', 'PCA-RR', 'DSH', 'LSH', 'SKLSH', 'SH', 'PCAH'};
nhmethods = length(hashmethods);
% load dataset
cons_data_name = ['pre_' db_name '.mat'];
switch(cons_data_name)
case 'pre_CIFAR10.mat'
if ~exist(cons_data_name, 'file')
load cifar_10yunchao.mat;
db_datalabel = cifar10;
db_data = db_datalabel(:, 1:end-1);
exp_data = construct_data(db_name, db_data, param);
else
load pre_CIFAR10.mat;
end
clear db_data db_datalabel cifar10;
case 'pre_CALTECH256.mat'
if ~exist(cons_data_name, 'file')
load Caltech256Feature/gist.mat;
db_datalabel = feature_dataset;
db_data = normalize1(db_datalabel(:, 1:end));
clear db_datalabel;
load Caltech256Feature/gabor.mat;
db_datalabel = feature_dataset;
db_data = [db_data normalize1(db_datalabel(:, 1:end))];
exp_data = construct_data(db_name, db_data, param);
else
load pre_CALTECH256.mat;
end
clear db_data db_datalabel;
case 'pre_CALTECH256CNN.mat'
if ~exist(cons_data_name, 'file')
load 256CNN1024dNorml.mat;
db_datalabel = feat;
db_data = db_datalabel(:, 1:end);
exp_data = construct_data(db_name, double(db_data), param);
else
load pre_CALTECH256CNN.mat;
end
clear db_data db_datalabel;
end
for i =1:length(loopnbits)
fprintf('======start %d bits encoding======\n\n', loopnbits(i));
param.nbits = loopnbits(i);
for j = 1:nhmethods
[~, ~, ~, ~, ~, retrieval_list{i, j}] = demo(exp_data, param, hashmethods{1, j});
end
end
switch(db_name)
case 'CIFAR10'
% show retrieval images
load cifar-10-batches-mat/data_batch_1.mat;
data1=data;
labels1=labels;
clear data labels;
load cifar-10-batches-mat/data_batch_2.mat;
data2=data;
labels2=labels;
clear data labels;
load cifar-10-batches-mat/data_batch_3.mat;
data3=data;
labels3=labels;
clear data labels;
load cifar-10-batches-mat/data_batch_4.mat;
data4=data;
labels4=labels;
clear data labels;
load cifar-10-batches-mat/data_batch_5.mat;
data5=data;
labels5=labels;
clear data labels;
load cifar-10-batches-mat/test_batch.mat;
data6=data;
labels6=labels;
clear data labels;
database=[data1 labels1; data2 labels2; data3 labels3; data4 labels4; data5 labels5; data6 labels6];
cifar10labels=[labels1; labels2; labels3;labels4; labels5; labels6];
figure('Color', [1 1 1]); hold on;
for j = 1: nhmethods
I2 = uint8(zeros(32, 32, 3, 26)); % 32 and 32 are the size of the output image
for i=1:(param.numRetrieval+1)
index=retrieval_list{1, j}(i,1);
image_r=database(index,1:1024);
image_g=database(index,1025:2048);
image_b=database(index, 2049:end-1);
image_rer=reshape(image_r, 32, 32);
image_reg=reshape(image_g, 32, 32);
image_reb=reshape(image_b, 32, 32);
image(:, :,1)=image_rer';
image(:, :, 2)=image_reg';
image(:, :, 3)=image_reb';
image=uint8(image);
I2(:, :, :, i) = image;
end
h =subplot(2, nhmethods, j);
queryIm = I2(:, :, :, 1);
imshow(queryIm);
t = title('Query image');
p = get(t,'Position');
set(t,'Position',[p(1) p(2)+0.3 p(3)])
clear t p;
axis equal;
p = get(h, 'pos');
p(1) = p(1)-0.014 ;
p(2) = p(2)-0.05 ;
p(3) = p(3)+0.01 ;
p(4) = p(4)-0.1 ;
set(h, 'pos', p);
clear h p;
h = subplot(2, nhmethods, j+nhmethods);
p = get(h, 'pos');
p(1) = p(1)-0.024 ;
p(3) = p(3)+0.024 ;
p(4) = p(4)+0.4 ;
set(h, 'pos', p);
clear p h;
montage(I2(:, :, :, 2:param.numRetrieval+1));
title(hashmethods{j});
end
case 'CALTECH256CNN'
load 256CNN1024dNorml.mat;
allNames = rgbImgList';
%allmgs = dir('256_ObjectCategories');
%allNames = {allmgs(~[allmgs.isdir]).name};
%figure('Color', [1 1 1]); hold on;
for j = 1: nhmethods
I2 = uint8(zeros(100, 103, 3, 26)); % 32 and 32 are the size of the output image
for i=1:(param.numRetrieval+1)
index = retrieval_list{1, j}(i,1);
imName_path=['J:\Ô¬ÓÂ\E\database\256_ObjectCategories\', allNames{1, index}];
%imName_path=['256_ObjectCategories/', allNames{1, index}];
im = imread(imName_path);
im = imresize(im, [100 100]);
if (ndims(im)~=3)
I2(1:100, 1:100, 1, i) = im;
I2(1:100, 1:100, 2, i) = im;
I2(1:100, 1:100, 3, i) = im;
else
I2(1:100, 1:100, :, i) = im;
end
end
% show form 1
figure('Color', [1 1 1]);
queryIm = I2(1:100, 1:100, :, 1);
imshow(queryIm);
title('Query image');
figure('Color', [1 1 1]);
subplot(5,1,1)
montage(I2(:, :, :, 2:6), 'Size', [1 NaN]);
title(hashmethods{j});
subplot(5,1,2)
montage(I2(:, :, :, 7:11), 'Size', [1 NaN]);
subplot(5,1,3)
montage(I2(:, :, :, 12:16), 'Size', [1 NaN]);
subplot(5,1,4)
montage(I2(:, :, :, 17:21), 'Size', [1 NaN]);
subplot(5,1,5)
montage(I2(:, :, :, 22:param.numRetrieval+1), 'Size', [1 NaN]);
% show form 2
%h =subplot(2, nhmethods, j);
%queryIm = I2(:, :, :, 1);
%imshow(queryIm);
%t = title('Query image');
%p = get(t,'Position');
%set(t,'Position',[p(1) p(2)+0.3 p(3)])
%clear t p;
%axis equal;
%p = get(h, 'pos');
%p(1) = p(1)-0.014 ;
%p(2) = p(2)-0.05 ;
%p(3) = p(3)+0.01 ;
%p(4) = p(4)-0.1 ;
%set(h, 'pos', p);
%clear h p;
%h = subplot(2, nhmethods, j+nhmethods);
%p = get(h, 'pos');
%p(1) = p(1)-0.024 ;
%p(3) = p(3)+0.024 ;
%p(4) = p(4)+0.4 ;
%set(h, 'pos', p);
%clear p h;
%montage(I2(:, :, :, 2:param.numRetrieval+1));
%title(hashmethods{j});
end
end