Skip to content

Latest commit

 

History

History
112 lines (86 loc) · 3.97 KB

File metadata and controls

112 lines (86 loc) · 3.97 KB

PyTorch BERT Large inference

Description

This document has instructions for running BERT Large SQuAD1.1 inference using Intel-optimized PyTorch.

Bare Metal

General setup

Follow link to install Miniconda and build Pytorch, IPEX, TorchVison Jemalloc and TCMalloc.

Prepare model

  cd <clone of the model zoo>/quickstart/language_modeling/pytorch/bert_large/inference/cpu
  git clone /~https://github.com/huggingface/transformers.git
  cd transformers
  git checkout v4.18.0
  git apply ../enable_ipex_for_squad.diff
  pip install -e ./
  cd ../

Model Specific Setup

  • Install dependency
  conda install intel-openmp
  • Download dataset

    Please following this link to get dev-v1.1.json

  • Download fine-tuned model

  mkdir bert_squad_model
  wget https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json -O bert_squad_model/config.json
  wget https://cdn.huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin  -O bert_squad_model/pytorch_model.bin
  wget https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt -O bert_squad_model/vocab.txt
  • Set ENV to use AMX if you are using SPR
  export DNNL_MAX_CPU_ISA=AVX512_CORE_AMX
  • Set ENV for model and dataset path, and optionally run with no network support
  export FINETUNED_MODEL=#path/bert_squad_model
  export EVAL_DATA_FILE=#/path/dev-v1.1.json
  
  
  ### [optional] Pure offline mode to benchmark:
  change --tokenizer_name to #path/bert_squad_model in scripts before running
  e.g. --tokenizer_name ${FINETUNED_MODEL} in run_multi_instance_throughput.sh
  
  • [optional] Do calibration to get quantization config if you want do calibration by yourself.
  export INT8_CONFIG=#/path/configure.json
  run_calibration.sh

Quick Start Scripts

DataType Throughput Latency Accuracy
FP32 bash run_multi_instance_throughput.sh fp32 bash run_multi_instance_realtime.sh fp32 bash run_accuracy.sh fp32
BF32 bash run_multi_instance_throughput.sh bf32 bash run_multi_instance_realtime.sh bf32 bash run_accuracy.sh bf32
BF16 bash run_multi_instance_throughput.sh bf16 bash run_multi_instance_realtime.sh bf16 bash run_accuracy.sh bf16
FP16 bash run_multi_instance_throughput.sh fp16 bash run_multi_instance_realtime.sh fp16 bash run_accuracy.sh fp16
INT8 bash run_multi_instance_throughput.sh int8 bash run_multi_instance_realtime.sh int8 bash run_accuracy.sh int8

Run the model

Follow the instructions above to setup your bare metal environment, download and preprocess the dataset, and do the model specific setup. Once all the setup is done, the Model Zoo can be used to run a quickstart script. Ensure that you have enviornment variables set to point to the dataset directory and an output directory.

# Clone the model zoo repo and set the MODEL_DIR
git clone /~https://github.com/IntelAI/models.git
cd models
export MODEL_DIR=$(pwd)

# Clone the Transformers repo in the BERT large inference directory
cd quickstart/language_modeling/pytorch/bert_large/inference/cpu
git clone /~https://github.com/huggingface/transformers.git
cd transformers
git checkout v4.18.0
git apply ../enable_ipex_for_squad.diff
pip install -e ./

# Env vars
export FINETUNED_MODEL=<path to the fine tuned model>
export EVAL_DATA_FILE=<path to dev-v1.1.json file>
export OUTPUT_DIR=<path to an output directory>

# Run a quickstart script (for example, FP32 multi-instance realtime inference)
bash run_multi_instance_realtime.sh fp32

License

Licenses can be found in the model package, in the licenses directory.