forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_ce.py
68 lines (54 loc) · 1.71 KB
/
_ce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
####this file is only used for continuous evaluation test!
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
sys.path.append(os.environ['ceroot'])
from kpi import CostKpi, DurationKpi, AccKpi
#### NOTE kpi.py should shared in models in some way!!!!
d_train_cost_kpi = CostKpi('d_train_cost', 0.05, 0, actived=True, desc='train cost of discriminator')
g_train_cost_kpi = CostKpi('g_train_cost', 0.05, 0, actived=True, desc='train cost of generator')
train_speed_kpi = DurationKpi(
'duration',
0.05,
0,
actived=True,
unit_repr='second',
desc='train time used in one GPU card')
tracking_kpis = [d_train_cost_kpi, g_train_cost_kpi, train_speed_kpi]
def parse_log(log):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost\t1.0
test_cost\t1.0
train_cost\t1.0
train_cost\t1.0
train_acc\t1.2
"
'''
for line in log.split('\n'):
fs = line.strip().split(',')
print(fs)
if len(fs) == 3 and fs[0] == 'kpis':
kpi_name = fs[1]
kpi_value = float(fs[2])
print("kpi {}={}".format(kpi_name, kpi_value))
yield kpi_name, kpi_value
def log_to_ce(log):
kpi_tracker = {}
for kpi in tracking_kpis:
kpi_tracker[kpi.name] = kpi
for (kpi_name, kpi_value) in parse_log(log):
print(kpi_name, kpi_value)
kpi_tracker[kpi_name].add_record(kpi_value)
kpi_tracker[kpi_name].persist()
if __name__ == '__main__':
log = sys.stdin.read()
# print("*****")
# print(log)
# print("****")
log_to_ce(log)