-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
49 lines (47 loc) · 1.84 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import os, sys
import random
import numpy as np
from arguments import get_arguments
import myutils
import os.path as osp
import datetime
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from tensorboardX import SummaryWriter
from data.get_datasets import select_dataset
from data.get_datasets import load_dataset
from trainer import Trainer
from tester import Tester
from tester import Outside_Tester
import myutils
if __name__ == '__main__':
args = myutils.code_init()
dataset = select_dataset(set_name=args.dataset)
dataload_, class_weights, class_encoding = load_dataset(args, dataset)
if args.tensorboard:
writer = SummaryWriter(log_dir=args.save_dir)
else:
writer = None
train = Trainer(dataload_[0], class_weights, class_encoding, args)
val = Tester(dataload_[1], class_weights, class_encoding, args)
test = Outside_Tester(dataload_[2], class_weights, class_encoding, args)
best_miou = [0.] * args.loop
for epoch in range(0, args.epochs):
epoch_lossS, train_IoUS, modelS, optimS, schedulerS = train.select_run_epoch()
myutils.train_loss_printer(writer,epoch_lossS,train_IoUS,optimS,epoch,args)
lossS, val_IoUS = val.run_epoch(modelS)
if args.lr_update == 'ReduceLROnPlateau':
for i in range(args.loop):
schedulerS[i].step(val_IoUS[i].value()[1])
save = myutils.val_loss_printer(writer, lossS, val_IoUS, epoch, args,best_miou)
myutils.save_checkpoint(save,modelS,optimS,val_IoUS,epoch,args)
if args.tensorboard:
writer.close()
for i in range(args.loop):
model_path = os.path.join(args.save_dir, args.name + str(i) + '_BEST_ckpt' + '.pth')
checkpoint = torch.load(model_path)
modelS[i].load_state_dict(checkpoint['state_dict'])
test.select_run_test(modelS)