forked from csuhan/s2anet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcascade_s2anet_1s_r50_fpn_1x_dota.py
144 lines (144 loc) · 4.42 KB
/
cascade_s2anet_1s_r50_fpn_1x_dota.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# model settings
model = dict(
type='CascadeS2ANetDetector',
pretrained='torchvision://resnet50',
num_stages=1,
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs=True,
num_outs=5),
bbox_head=[
dict(
type='CascadeS2ANetHead',
num_classes=16,
in_channels=256,
feat_channels=256,
stacked_convs=2,
with_align=True,
anchor_scales=[4],
anchor_ratios=[1.0],
anchor_strides=[8, 16, 32, 64, 128],
anchor_base_sizes=None,
target_means=(.0, .0, .0, .0, .0),
target_stds=(1.0, 1.0, 1.0, 1.0, 1.0),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
]
)
# training and testing settings
train_cfg = dict(
loss_weight=[1.0,],
stage_cfg=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1,
iou_calculator=dict(type='BboxOverlaps2D_rotated')),
bbox_coder=dict(type='DeltaXYWHABBoxCoder',
target_means=(0., 0., 0., 0., 0.),
target_stds=(1., 1., 1., 1., 1.),
clip_border=True),
allowed_border=-1,
pos_weight=-1,
debug=False),
]
)
test_cfg = dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms_rotated', iou_thr=0.1),
max_per_img=2000)
# dataset settings
dataset_type = 'DotaDataset'
data_root = 'data/dota_1024/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RotatedResize', img_scale=(1024, 1024), keep_ratio=True),
dict(type='RotatedRandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=False,
transforms=[
dict(type='RotatedResize', img_scale=(1024, 1024), keep_ratio=True),
dict(type='RotatedRandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'trainval_split/trainval_s2anet.pkl',
img_prefix=data_root + 'trainval_split/images/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'trainval_split/trainval_s2anet.pkl',
img_prefix=data_root + 'trainval_split/images/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'test_split/test_s2anet.pkl',
img_prefix=data_root + 'test_split/images/',
pipeline=test_pipeline))
evaluation = dict(
gt_dir='data/dota/test/labelTxt/', # change it to valset for offline validation
imagesetfile='data/dota/test/test.txt')
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
checkpoint_config = dict(interval=4)
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
])
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]