-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexe0_motifs.py
46 lines (39 loc) · 1.47 KB
/
exe0_motifs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# This is a standard implementation for the levenshtein distance.
# You can use it to solve the exercise but you do not have to.
def levenshteinDistance(s, t):
"""
Levenshtein implementation by Christopher P. Matthews, taken from
https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python
Args:
s (str): string1
t (str): string2
Returns:
int: computed levenshtein distance
"""
if s == t: return 0
elif len(s) == 0: return len(t)
elif len(t) == 0: return len(s)
v0 = [None] * (len(t) + 1)
v1 = [None] * (len(t) + 1)
for i in range(len(v0)):
v0[i] = i
for i in range(len(s)):
v1[0] = i + 1
for j in range(len(t)):
cost = 0 if s[i] == t[j] else 1
v1[j + 1] = min(v1[j] + 1, v0[j + 1] + 1, v0[j] + cost)
for j in range(len(v0)):
v0[j] = v1[j]
return v1[len(t)]
# The following function should take max edit distance, a motif and a dna-string and return
# a list of starting positions and length of dna-substrings that match the motif with at
# most max edit distance
def find_similar_motifs(max_edit_distance, motif, dna):
res = []
for l in range(1, len(motif) + max_edit_distance + 1):
for i in range(len(dna) - l + 1):
subseq = dna[i:i+l]
dist = levenshteinDistance(motif, subseq)
if dist <= max_edit_distance:
res.append([i, l])
return res