-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkegg_path_genes.py
59 lines (51 loc) · 1.64 KB
/
kegg_path_genes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from bioservices.kegg import KEGG
import re
import pandas as pd
dirr = '~/Documents/consultation/ChunXia/Rat_timedata/circadian_analysis/input/'
path = pd.read_excel(dirr + 'target_genes.xlsx',
sheet_name='KEGG'
)['KEGG']
def substring(whole, sub1, sub2):
return whole[whole.index(sub1) : whole.index(sub2)]
def kegg_genes(pathways):
k = KEGG()
k.organism = "rno"
result = {}
for i in path:
data = k.get(i[0:8])
dict_data = k.parse(data)
if(type(dict_data) == str):
if("COMPOUND" in dict_data):
dict_data = substring(dict_data,
"GENE",
"COMPOUND"
)
else:
dict_data = substring(dict_data,
"GENE",
"REFERENCE"
)
subStr = re.findall(r' (.+?);',
dict_data
)
subStr = [x.split() for x in subStr]
if(type(dict_data) == dict):
subStr = [x.split() for x in list(dict_data['GENE'])]
pathgen = []
for x in range(0, len(subStr)):
pathgen.append(subStr[x][1])
result[i] = pathgen
return result
mydict = kegg_genes(pathways=path)
max_len = []
for key in mydict:
max_len.append(len(mydict[key]))
for key in mydict:
la = len(mydict[key])
if not max_len == la:
mydict[key].extend(['']*(max(max_len)-la))
df = pd.DataFrame.from_dict(mydict)
df.to_excel(dirr + 'kegg_genes.xlsx',
header=True,
index=False
)