-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathdinosaur.py
72 lines (63 loc) · 2.48 KB
/
dinosaur.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
@author: Viet Nguyen <nhviet1009@gmail.com>
"""
import tensorflow as tf
import cv2
import multiprocessing as _mp
from src.utils import load_graph, dinosaur, detect_hands, predict
from src.config import RED, GREEN, YELLOW
tf.flags.DEFINE_integer("width", 640, "Screen width")
tf.flags.DEFINE_integer("height", 480, "Screen height")
tf.flags.DEFINE_float("threshold", 0.6, "Threshold for score")
tf.flags.DEFINE_float("alpha", 0.3, "Transparent level")
tf.flags.DEFINE_string("pre_trained_model_path", "src/pretrained_model.pb", "Path to pre-trained model")
FLAGS = tf.flags.FLAGS
def main():
graph, sess = load_graph(FLAGS.pre_trained_model_path)
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, FLAGS.width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, FLAGS.height)
mp = _mp.get_context("spawn")
v = mp.Value('i', 0)
lock = mp.Lock()
process = mp.Process(target=dinosaur, args=(v, lock))
process.start()
while True:
key = cv2.waitKey(10)
if key == ord("q"):
break
_, frame = cap.read()
frame = cv2.flip(frame, 1)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
boxes, scores, classes = detect_hands(frame, graph, sess)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
results = predict(boxes, scores, classes, FLAGS.threshold, FLAGS.width, FLAGS.height)
if len(results) == 1:
x_min, x_max, y_min, y_max, category = results[0]
x = int((x_min + x_max) / 2)
y = int((y_min + y_max) / 2)
cv2.circle(frame, (x, y), 5, RED, -1)
if category == "Closed":
action = 0 # Do nothing
text = "Run"
elif category == "Open" and y < FLAGS.height/2:
action = 1 # Jump
text = "Jump"
elif category == "Open" and y > FLAGS.height/2:
action = 2
text = "Duck"
else:
action = 0
text = "Run"
with lock:
v.value = action
cv2.putText(frame, "{}".format(text), (x_min, y_min - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, GREEN, 2)
overlay = frame.copy()
cv2.rectangle(overlay, (0, 0), (FLAGS.width, int(FLAGS.height / 2)), YELLOW, -1)
cv2.addWeighted(overlay, FLAGS.alpha, frame, 1 - FLAGS.alpha, 0, frame)
cv2.imshow('Detection', frame)
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()