-
-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathmodels.py
executable file
·315 lines (264 loc) · 12.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from collections import defaultdict
import torch.nn as nn
from utils.utils import *
def create_modules(module_defs):
"""Constructs module list of layer blocks from module configuration in module_defs."""
hyperparams = module_defs.pop(0)
output_filters = [int(hyperparams["channels"])]
module_list = nn.ModuleList()
for i, module_def in enumerate(module_defs):
modules = nn.Sequential()
if module_def["type"] == "convolutional":
bn = int(module_def["batch_normalize"])
filters = int(module_def["filters"])
kernel_size = int(module_def["size"])
pad = (kernel_size - 1) // 2 if int(module_def["pad"]) else 0
modules.add_module(
"conv_%d" % i,
nn.Conv2d(
in_channels=output_filters[-1],
out_channels=filters,
kernel_size=kernel_size,
stride=int(module_def["stride"]),
dilation=1,
padding=pad,
bias=not bn,
),
)
if bn:
modules.add_module("batch_norm_%d" % i, nn.BatchNorm2d(filters))
if module_def["activation"] == "leaky":
modules.add_module("leaky_%d" % i, nn.LeakyReLU())
elif module_def["type"] == "upsample":
upsample = nn.Upsample(scale_factor=int(module_def["stride"])) # , mode='bilinear', align_corners=True)
modules.add_module("upsample_%d" % i, upsample)
elif module_def["type"] == "route":
layers = [int(x) for x in module_def["layers"].split(",")]
filters = sum(output_filters[layer_i] for layer_i in layers)
modules.add_module("route_%d" % i, EmptyLayer())
elif module_def["type"] == "shortcut":
filters = output_filters[int(module_def["from"])]
modules.add_module("shortcut_%d" % i, EmptyLayer())
elif module_def["type"] == "yolo":
anchor_idxs = [int(x) for x in module_def["mask"].split(",")]
# Extract anchors
anchors = [float(x) for x in module_def["anchors"].split(",")]
anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)]
anchors = [anchors[i] for i in anchor_idxs]
num_classes = int(module_def["classes"])
img_height = int(hyperparams["height"])
# Define detection layer
yolo_layer = YOLOLayer(anchors, num_classes, img_height, anchor_idxs)
modules.add_module("yolo_%d" % i, yolo_layer)
# Register module list and number of output filters
module_list.append(modules)
output_filters.append(filters)
return hyperparams, module_list
class EmptyLayer(nn.Module):
"""Placeholder for 'route' and 'shortcut' layers."""
def __init__(self):
"""Initializes a placeholder layer for 'route' and 'shortcut' in YOLO architecture."""
super().__init__()
class YOLOLayer(nn.Module):
"""Processes YOLO detection layers with specified anchors, classes, and image dimensions for object detection."""
def __init__(self, anchors, nC, img_dim, anchor_idxs):
"""Initializes YOLO layer with given anchors, number of classes, image dimensions, and anchor indexes."""
super().__init__()
anchors = list(anchors)
nA = len(anchors)
self.anchors = anchors
self.nA = nA # number of anchors (3)
self.nC = nC # number of classes (60)
self.bbox_attrs = 5 + nC
self.img_dim = img_dim # from hyperparams in cfg file, NOT from parser
if anchor_idxs[0] == (nA * 2): # 6
stride = 32
elif anchor_idxs[0] == nA: # 3
stride = 16
else:
stride = 8
# Build anchor grids
nG = int(self.img_dim / stride)
self.grid_x = torch.arange(nG).repeat(nG, 1).view([1, 1, nG, nG]).float()
self.grid_y = torch.arange(nG).repeat(nG, 1).t().view([1, 1, nG, nG]).float()
self.scaled_anchors = torch.FloatTensor([(a_w / stride, a_h / stride) for a_w, a_h in anchors])
self.anchor_w = self.scaled_anchors[:, 0:1].view((1, nA, 1, 1))
self.anchor_h = self.scaled_anchors[:, 1:2].view((1, nA, 1, 1))
def forward(self, p, targets=None, requestPrecision=False, weight=None, epoch=None):
"""Processes input tensor `p`, optional targets for precision calculation; returns loss, precision, or both."""
FT = torch.cuda.FloatTensor if p.is_cuda else torch.FloatTensor
torch.device("cuda:0" if p.is_cuda else "cpu")
# weight = xview_class_weights(range(60)).to(device)
bs = p.shape[0]
nG = p.shape[2]
stride = self.img_dim / nG
if p.is_cuda and not self.grid_x.is_cuda:
self.grid_x, self.grid_y = self.grid_x.cuda(), self.grid_y.cuda()
self.anchor_w, self.anchor_h = self.anchor_w.cuda(), self.anchor_h.cuda()
# self.scaled_anchors = self.scaled_anchors.cuda()
# x.view(4, 650, 19, 19) -- > (4, 10, 19, 19, 65) # (bs, anchors, grid, grid, classes + xywh)
p = p.view(bs, self.nA, self.bbox_attrs, nG, nG).permute(0, 1, 3, 4, 2).contiguous() # prediction
# Get outputs
x = torch.sigmoid(p[..., 0]) # Center x
y = torch.sigmoid(p[..., 1]) # Center y
w = torch.sigmoid(p[..., 2]) # Width
h = torch.sigmoid(p[..., 3]) # Height
width = ((w.data * 2) ** 2) * self.anchor_w
height = ((h.data * 2) ** 2) * self.anchor_h
# Add offset and scale with anchors (in grid space, i.e. 0-13)
pred_boxes = FT(p[..., :4].shape)
pred_conf = p[..., 4] # Conf
pred_cls = p[..., 5:] # Class
# Training
if targets is not None:
# BCEWithLogitsLoss1 = nn.BCEWithLogitsLoss(reduction='sum') # version 0.4.1
BCEWithLogitsLoss1 = nn.BCEWithLogitsLoss(size_average=False) # version 0.4.0
BCEWithLogitsLoss0 = nn.BCEWithLogitsLoss()
# BCEWithLogitsLoss2 = nn.BCEWithLogitsLoss(weight=weight, reduction='sum')
# MSELoss = nn.MSELoss(reduction='sum') # version 0.4.1
MSELoss = nn.MSELoss(size_average=False) # version 0.4.0
CrossEntropyLoss = nn.CrossEntropyLoss(weight=weight)
if requestPrecision:
gx = self.grid_x[:, :, :nG, :nG]
gy = self.grid_y[:, :, :nG, :nG]
pred_boxes[..., 0] = x.data + gx - width / 2
pred_boxes[..., 1] = y.data + gy - height / 2
pred_boxes[..., 2] = x.data + gx + width / 2
pred_boxes[..., 3] = y.data + gy + height / 2
tx, ty, tw, th, mask, tcls, TP, FP, FN, TC = build_targets(
pred_boxes, pred_conf, pred_cls, targets, self.scaled_anchors, self.nA, self.nC, nG, requestPrecision
)
tcls = tcls[mask]
if x.is_cuda:
tx, ty, tw, th, mask, tcls = tx.cuda(), ty.cuda(), tw.cuda(), th.cuda(), mask.cuda(), tcls.cuda()
# Mask outputs to ignore non-existing objects (but keep confidence predictions)
nM = mask.sum().float()
nGT = sum(len(x) for x in targets)
if nM > 0:
# wC = weight[torch.argmax(tcls, 1)] # weight class
# wC /= sum(wC)
lx = 2 * MSELoss(x[mask], tx[mask])
ly = 2 * MSELoss(y[mask], ty[mask])
lw = 4 * MSELoss(w[mask], tw[mask])
lh = 4 * MSELoss(h[mask], th[mask])
lconf = 1.5 * BCEWithLogitsLoss1(pred_conf[mask], mask[mask].float())
lcls = nM * CrossEntropyLoss(pred_cls[mask], torch.argmax(tcls, 1)) # * min(epoch*.01 + 0.125, 1)
# lcls = BCEWithLogitsLoss2(pred_cls[mask], tcls.float())
else:
lx, ly, lw, lh, lcls, lconf = FT([0]), FT([0]), FT([0]), FT([0]), FT([0]), FT([0])
lconf += nM * BCEWithLogitsLoss0(pred_conf[~mask], mask[~mask].float())
loss = lx + ly + lw + lh + lconf + lcls
i = torch.sigmoid(pred_conf[~mask]) > 0.999
FPe = torch.zeros(60)
if i.sum() > 0:
FP_classes = torch.argmax(pred_cls[~mask][i], 1)
for c in FP_classes:
FPe[c] += 1
return (
loss,
loss.item(),
lx.item(),
ly.item(),
lw.item(),
lh.item(),
lconf.item(),
lcls.item(),
nGT,
TP,
FP,
FPe,
FN,
TC,
)
else:
pred_boxes[..., 0] = x.data + self.grid_x
pred_boxes[..., 1] = y.data + self.grid_y
pred_boxes[..., 2] = width
pred_boxes[..., 3] = height
# If not in training phase return predictions
output = torch.cat(
(
pred_boxes.view(bs, -1, 4) * stride,
torch.sigmoid(pred_conf.view(bs, -1, 1)),
pred_cls.view(bs, -1, self.nC),
),
-1,
)
return output.data
class Darknet(nn.Module):
"""YOLOv3 object detection model."""
def __init__(self, config_path, img_size=416):
"""Initializes Darknet model with a configuration path and optional image size, parsing and creating model
modules.
"""
super().__init__()
self.module_defs = parse_model_config(config_path)
self.module_defs[0]["height"] = img_size
self.hyperparams, self.module_list = create_modules(self.module_defs)
self.img_size = img_size
self.loss_names = ["loss", "x", "y", "w", "h", "conf", "cls", "nGT", "TP", "FP", "FPe", "FN", "TC"]
def forward(self, x, targets=None, requestPrecision=False, weight=None, epoch=None):
"""Processes input through the model, calculates losses, and returns output; includes optional precision
computation.
"""
is_training = targets is not None
output = []
self.losses = defaultdict(float)
layer_outputs = []
for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)):
if module_def["type"] in ["convolutional", "upsample"]:
x = module(x)
elif module_def["type"] == "route":
layer_i = [int(x) for x in module_def["layers"].split(",")]
x = torch.cat([layer_outputs[i] for i in layer_i], 1)
elif module_def["type"] == "shortcut":
layer_i = int(module_def["from"])
x = layer_outputs[-1] + layer_outputs[layer_i]
elif module_def["type"] == "yolo":
# Train phase: get loss
if is_training:
x, *losses = module[0](x, targets, requestPrecision, weight, epoch)
for name, loss in zip(self.loss_names, losses):
self.losses[name] += loss
# Test phase: Get detections
else:
x = module(x)
output.append(x)
layer_outputs.append(x)
if is_training:
self.losses["nGT"] /= 3
self.losses["TC"] /= 3
metrics = torch.zeros(4, 60) # TP, FP, FN, target_count
ui = np.unique(self.losses["TC"])[1:]
for i in ui:
j = self.losses["TC"] == float(i)
metrics[0, i] = (self.losses["TP"][j] > 0).sum().float() # TP
metrics[1, i] = (self.losses["FP"][j] > 0).sum().float() # FP
metrics[2, i] = (self.losses["FN"][j] == 3).sum().float() # FN
metrics[3] = metrics.sum(0)
metrics[1] += self.losses["FPe"]
self.losses["TP"] = metrics[0].sum()
self.losses["FP"] = metrics[1].sum()
self.losses["FN"] = metrics[2].sum()
self.losses["TC"] = 0
self.losses["metrics"] = metrics
return sum(output) if is_training else torch.cat(output, 1)
def parse_model_config(path):
"""Parses the yolo-v3 layer configuration file and returns module definitions."""
file = open(path)
lines = file.read().split("\n")
lines = [x for x in lines if x and not x.startswith("#")]
lines = [x.rstrip().lstrip() for x in lines] # get rid of fringe whitespaces
module_defs = []
for line in lines:
if line.startswith("["): # This marks the start of a new block
module_defs.append({})
module_defs[-1]["type"] = line[1:-1].rstrip()
if module_defs[-1]["type"] == "convolutional":
module_defs[-1]["batch_normalize"] = 0
else:
key, value = line.split("=")
value = value.strip()
module_defs[-1][key.rstrip()] = value.strip()
return module_defs