-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_pt.py
352 lines (299 loc) · 14 KB
/
run_pt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import argparse
import time
import warnings
import torch
import os, time
import sys
import yaml
import datetime
import logging
import random
import numpy as np
import pandas as pd
import transformers
import json
import torch.nn as nn
from torch.utils.data import DataLoader
from numpy import nan
from typing import *
# from transformers import get_inverse_sqrt_schedule
from tqdm import tqdm
from copy import deepcopy
from accelerate import Accelerator
from accelerate.utils import set_seed
from src.utils.data_utils import BatchSampler
from src.utils.utils import param_num
from src.models import PLM_model, GNN_model
from src.data import prepare_train_val_dataset
# set path
current_dir = os.getcwd()
sys.path.append(current_dir)
# ignore warning information
transformers.logging.set_verbosity_error()
warnings.filterwarnings("ignore")
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
def printlog(info):
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("\n" + "==========" * 3 + "%s" % nowtime + "==========" * 3)
print(str(info) + "\n")
def create_model(args):
plm_model = PLM_model(args)
args.plm_hidden_size = plm_model.model.config.hidden_size
logger.info("**** Config ****")
for key, value in vars(args).items():
print("->",key, value)
gnn_model = GNN_model(args)
logger.info(param_num(gnn_model))
return plm_model, gnn_model, args
class StepRunner:
def __init__(self, args, plm_model, gnn_model,
loss_fn, accelerator=None,
stage="train", metrics_dict=None,
optimizer=None, scheduler=None):
self.plm_model, self.gnn_model = plm_model, gnn_model
self.metrics_dict, self.stage = metrics_dict, stage
self.accelerator = accelerator
self.optimizer, self.scheduler, self.loss_fn = optimizer, scheduler, loss_fn
self.args = args
def step(self, batch):
batch_graph = self.plm_model(batch)
if self.stage == "train":
with self.accelerator.accumulate(self.gnn_model):
out, _ = self.gnn_model(batch_graph)
out = out.cuda()
y = torch.cat([data.y for data in batch]).to(out.device)
loss = self.loss_fn(out[:, :20], y)
self.accelerator.backward(loss)
if self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(self.gnn_model.parameters(), self.args.max_grad_norm)
self.optimizer.step()
if self.scheduler is not None:
self.scheduler.step() # Update learning rate schedule
self.optimizer.zero_grad()
else:
out, _ = self.gnn_model(batch_graph)
out = out.cuda()
y = torch.cat([data.y for data in batch]).to(out.device)
loss = self.loss_fn(out[:, :20], y)
# compute metrics
step_metrics = {}
if self.metrics_dict and self.stage != 'train':
# metrics
step_metrics = {}
if self.metrics_dict:
step_metrics = {f"{self.stage}_{name}": metric_fn()
for name, metric_fn in self.metrics_dict.items()}
return loss.item(), self.gnn_model, step_metrics
def train_step(self, batch):
self.gnn_model.train()
return self.step(batch)
@torch.no_grad()
def eval_step(self, batch):
self.gnn_model.eval()
return self.step(batch)
def __call__(self, batch):
if self.stage == "train":
return self.train_step(batch)
else:
return self.eval_step(batch)
class EpochRunner:
def __init__(self, steprunner):
self.steprunner = steprunner
self.stage = steprunner.stage
def __call__(self, dataloader):
total_loss = 0
total_steps = len(dataloader)
loop = tqdm(enumerate(dataloader), total=len(dataloader), file=sys.stdout)
total_metrics = {}
epoch_log = {}
for step, batch in loop:
step_loss, gnn_model, step_metrics = self.steprunner(batch)
if step == 0 and step_metrics:
total_metrics = {name: 0 for name in step_metrics.keys()}
step_log = dict({f"{self.stage}_loss": round(step_loss, 3)}, **step_metrics)
for name, metric in step_metrics.items():
total_metrics[name] += metric
total_loss += step_loss
loop.set_postfix(**step_log)
epoch_loss = total_loss / total_steps
epoch_metrics = {}
for name, metric in total_metrics.items():
epoch_metrics[name] = metric / total_steps
epoch_log = dict({f"{self.stage}_loss": epoch_loss}, **epoch_metrics)
loop.set_postfix(**epoch_log)
return gnn_model, epoch_log
def train_model(args, plm_model, gnn_model,
optimizer, scheduler, loss_fn,
accelerator=None, metrics_dict=None,
train_data=None, valid_data=None,
monitor="valid_loss", mode="min"):
history = {}
start_epoch = 1
logger.info("***** Running training *****")
if args.auto_continue_train:
history_df = pd.read_csv(os.path.join(args.model_dir, "history.csv"))
names = history_df.columns
gnn_model.load_state_dict(torch.load(os.path.join(args.model_dir, f"best_{monitor}.pt"))["state_dict"])
if args.epoch_idx:
logger.info(f" Train from epoch_idx = {args.epoch_idx} ")
else:
if mode == "min":
args.epoch_idx = int(history_df[history_df[monitor] == history_df[monitor].min()]["epoch"])
elif mode == "max":
args.epoch_idx = int(history_df[history_df[monitor] == history_df[monitor].max()]["epoch"])
logger.info(f" Auto continue to train from epoch_idx = {args.epoch_idx} ")
for name in names:
history[name] = list(history_df[name][:int(args.epoch_idx)])
start_epoch += args.epoch_idx
for epoch in range(start_epoch, args.num_train_epochs + 1):
printlog(f"Epoch {epoch} / {args.num_train_epochs}")
# 1,train -------------------------------------------------
train_step_runner = StepRunner(
args=args, stage="train",
plm_model=plm_model, gnn_model=gnn_model,
loss_fn=loss_fn, accelerator=accelerator,
metrics_dict=deepcopy(metrics_dict),
optimizer=optimizer, scheduler=scheduler
)
train_epoch_runner = EpochRunner(train_step_runner)
gnn_model, train_metrics = train_epoch_runner(train_data)
for name, metric in train_metrics.items():
history[name] = history.get(name, []) + [metric]
# 2,validate -------------------------------------------------
if valid_data:
val_step_runner = StepRunner(
args=args, stage="valid",
plm_model=plm_model, gnn_model=gnn_model,
loss_fn=loss_fn, accelerator=accelerator,
metrics_dict=deepcopy(metrics_dict),
optimizer=optimizer, scheduler=scheduler
)
val_epoch_runner = EpochRunner(val_step_runner)
with torch.no_grad():
gnn_model, val_metrics = val_epoch_runner(valid_data)
val_metrics["epoch"] = epoch
for name, metric in val_metrics.items():
history[name] = history.get(name, []) + [metric]
# 3,early-stopping -------------------------------------------------
arr_scores = history[monitor]
best_score_idx = np.argmax(arr_scores) if mode == "max" else np.argmin(arr_scores)
if best_score_idx == len(arr_scores) - 1:
if not os.path.exists(args.model_dir):
os.mkdir(args.model_dir)
model_path = os.path.join(args.model_dir, f"best_{monitor}.pt")
torch.save({
"state_dict": gnn_model.state_dict(),
"epoch": epoch,
"history": history,
}, model_path)
print(f"<<<<<< reach best {monitor} : {'%.3f'%arr_scores[best_score_idx]} >>>>>>")
history_df = pd.DataFrame(history)
history_df.to_csv(os.path.join(args.model_dir, "history.csv"), index=False)
if args.patience > 0 and len(arr_scores) - best_score_idx > args.patience:
print(f"<<<<<< {monitor} without improvement in {args.patience} epoch, early stopping >>>>>>")
break
def create_parser():
parser = argparse.ArgumentParser()
# model config
parser.add_argument("--noise_ratio", type=float, default=0.05, help="noise probability")
parser.add_argument("--noise_type", type=str, default="mut", help="mask or mut")
parser.add_argument("--gnn", type=str, default="egnn", help="gat, gcn or egnn")
parser.add_argument("--gnn_config", type=str, default="src/config/egnn.yaml", help="gnn config")
parser.add_argument("--gnn_hidden_dim", type=int, default=512, help="hidden size of gnn")
parser.add_argument("--plm", type=str, default="facebook/esm2_t33_650M_UR50D", help="esm param number")
# training strategy
parser.add_argument("--seed", type=int, default=3407, help="random seed")
parser.add_argument("--learning_rate", type=float, default=1e-4, help="learning rate")
parser.add_argument("--warmup_steps", type=int, default=0, help="warm up step")
parser.add_argument("--warmup_percent", type=float, default=0.1, help="warm up percent")
parser.add_argument("--weight_decay", type=float, default=1e-2, help="weight_decay")
parser.add_argument("--num_train_epochs", type=int, default=50, help="number of epochs to train")
parser.add_argument("--epoch_idx", type=int, default=0, help="the idx of epoch to continue training")
parser.add_argument("--auto_continue_train", action="store_true", help="auto extract epoch idx from history")
parser.add_argument("--batch_token_num", type=int, default=4096, help="how many tokens in one batch")
parser.add_argument("--max_graph_token_num", type=int, default=3000, help="max token num a graph has")
parser.add_argument("--patience", type=int, default=0, help="early stopping patience")
parser.add_argument("--max_grad_norm", type=float, default=4.0, help="clip grad norm")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="gradient accumulation steps")
# dataset
parser.add_argument("--cath_dataset", type=str, default="data/cath_k10", help="main protein dataset")
parser.add_argument("--c_alpha_max_neighbors", type=int, default=10, help="graph dataset K")
parser.add_argument("--model_dir", type=str, default="", help="which model used to load")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = create_parser()
args.gnn_config = yaml.load(open(args.gnn_config), Loader=yaml.FullLoader)[args.gnn]
args.gnn_config["hidden_channels"] = args.gnn_hidden_dim
args.n_gpu = torch.cuda.device_count()
# load dataset
logger.info("***** Loading Dataset *****")
train_dataset, valid_dataset = prepare_train_val_dataset(args)
logger.info("***** Sample Data *****")
# sample 3 data
for _ in range(3):
i = random.randint(0, len(train_dataset)-1)
print(f">>> {train_dataset[i]}")
def collect_fn(batch):
return batch
cath_dataloader = lambda dataset: DataLoader(
dataset=dataset, num_workers=4,
collate_fn=lambda x: collect_fn(x),
batch_sampler=BatchSampler(
dataset,
max_len=args.max_graph_token_num,
batch_token_num=args.batch_token_num,
shuffle=True
)
)
train_dataloader, valid_dataloader = map(
cath_dataloader, (train_dataset, valid_dataset)
)
# load model
plm_model, gnn_model, args = create_model(args)
loss_fn = torch.nn.CrossEntropyLoss()
# t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
optimizer = torch.optim.Adam(
gnn_model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay
)
# args.warmup_steps = args.warmup_steps if args.warmup_percent == 0 else int(args.warmup_percent*t_total)
# scheduler = get_inverse_sqrt_schedule(
# optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
# )
scheduler = None
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
gnn_model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
gnn_model, optimizer, train_dataloader, valid_dataloader
)
os.makedirs(args.model_dir, exist_ok=True)
with open(os.path.join(args.model_dir, "config.json"), 'w', encoding='utf-8') as f:
json.dump(vars(args), f, ensure_ascii=False)
logger.info("***** Running training *****")
logger.info(" Num train examples = %d", len(train_dataset))
logger.info(" Num valid examples = %d", len(valid_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Batch token num = %d", args.batch_token_num)
logger.info(
" Total train batch token num (w. parallel, distributed & accumulation) = %d",
args.batch_token_num
* args.gradient_accumulation_steps
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
# logger.info(" Total optimization steps = %d", t_total)
# Train!
set_seed(args) # Added here for reproducibility
train_model(
args=args,
plm_model=plm_model, gnn_model=gnn_model,
optimizer=optimizer, scheduler=scheduler,
loss_fn=loss_fn, accelerator=accelerator,
train_data=train_dataloader,
valid_data=valid_dataloader
)
# save history