-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathexport_and_optimize.py
124 lines (112 loc) · 4.72 KB
/
export_and_optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import numpy as np
import random
import sys
import onnx
import torch
import transformers
import argparse
from transformers import RobertaConfig, RobertaTokenizer
import onnxruntime as ort
import optimizer
from typing import Callable, Dict, List, OrderedDict, Tuple
def export_onnx_model():
if os.path.exists(exported_model_path):
print(f'Found exported onnx model at {exported_model_path}.')
return
with torch.no_grad():
torch.onnx.export(
model,
args=(input_ids, attention_mask, prompt_embedding),
f=exported_model_path,
verbose=False,
input_names=['input_ids', 'attention_mask', 'prompt_embedding'],
output_names=['logits'],
dynamic_axes={
'input_ids': {0: 'batch_size', 1: 'max_seq_len'},
'attention_mask': {0: 'batch_size', 1: 'max_seq_len'},
'prompt_embedding': {} if is_deep else {0: 'batch_size'},
'logits': {0: 'batch_size'}
},
do_constant_folding=True,
opset_version=12,
)
onnx_model = onnx.load(exported_model_path)
onnx.checker.check_model(onnx_model)
print('export finished')
def export_and_optimize_onnxruntime_model():
export_onnx_model()
optimized_model = optimizer.optimize_model(
exported_model_path,
model_type='bert',
num_heads=config.num_attention_heads,
hidden_size=config.hidden_size,
opt_level=99,
use_gpu=True
)
optimized_model.convert_float_to_float16()
print('fp16 optimization finished')
optimized_model.save_model_to_file(optimized_model_path)
print(f'optimized model saved to {optimized_model_path}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default='roberta-large', type=str, help='Pretrained model our BBT bases on.')
parser.add_argument(
'--batch_size',
default=32,
type=int,
help='''Model batch size during export. Independent to batch size during inference.
Since batch size axis is dynamic, we recommend you use default value.'''
)
parser.add_argument(
'--max_seq_len',
default=128,
type=int,
help='''Model max sequence length during export. Independent to max sequence length during inference.
Since max sequence length axis is dynamic, we recommend you use default value.'''
)
parser.add_argument('--n_prompt_tokens', default=50, type=int, help='Number of prompt tokens during inference.')
parser.add_argument('--prompt_embed_dim', default=1024, type=int, help='Prompt embedding dimension.')
parser.add_argument("--cat_or_add", default='add', type=str)
parser.add_argument("--deep", action='store_true', help='Whether to export the deep version.')
parser.add_argument(
'--exported_model_name',
default='model',
type=str,
help='File name of exported onnx model. No prefix'
)
parser.add_argument(
'--optimized_model_name',
default='optimized_model',
type=str,
help='File name of optimized onnx model. No prefix.'
)
args = parser.parse_args()
if not os.path.exists('onnx_models'):
os.mkdir('onnx_models')
model_name = args.model_name
bsz = args.batch_size
max_seq_len = args.max_seq_len
n_prompt_tokens = args.n_prompt_tokens
prompt_embed_dim = args.prompt_embed_dim
is_deep = args.deep
print(is_deep)
if is_deep:
from deep_modeling_roberta import RobertaModel
else:
from modeling_roberta import RobertaModel
if args.cat_or_add not in ['add', 'cat']:
raise ValueError(f'Argument `cat_or_add` only supports `cat` and `add`, got `{args.cat_or_add}` instead.')
config = RobertaConfig.from_pretrained(model_name)
tokenizer = RobertaTokenizer.from_pretrained(model_name)
model = RobertaModel.from_pretrained(model_name).eval().cuda()
model.concat_prompt = args.cat_or_add == 'cat'
input_ids = torch.randint(low=1, high=10000, size=(bsz, max_seq_len), dtype=torch.int64, device='cuda')
attention_mask = torch.ones((bsz, max_seq_len), dtype=torch.int64, device='cuda')
if is_deep:
prompt_embedding = torch.randn(size=(config.num_hidden_layers, n_prompt_tokens, prompt_embed_dim), dtype=torch.float32, device='cuda')
else:
prompt_embedding = torch.randn(size=(bsz, n_prompt_tokens, prompt_embed_dim), dtype=torch.float32, device='cuda')
exported_model_path = os.path.join('onnx_models', args.exported_model_name + '.onnx')
optimized_model_path = os.path.join('onnx_models', args.optimized_model_name + '.onnx')
export_and_optimize_onnxruntime_model()