-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDC5.swift
69 lines (61 loc) · 2.58 KB
/
DC5.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
//
// DC5.swift
// AlgorithmsSwift
//
// Created by Michael Ho on 12/21/20.
//
import Foundation
class DC5 {
/**
Calculate the multiplication of 2 polynomials.
- Parameter p: The coefficients of the first polynomials in double.
- Parameter q: The coefficients of the second polynomials in double.
- Parameter n: The size of the polynomials.
- Parameter omega: The omega w in the FFT formula.
- Parameter omegaInverse: The omega inverse ω^-1 in the FFT formula.
- Returns: The result of the multiplication.
*/
func multiply(_ p: [Double], _ q: [Double], _ n: Int, _ omega: [Complex], _ omegaInverse: [Complex]) -> [Double] {
// Generate complex objects with 2 times the size
var pInteger = Array(repeating: Complex(), count: n)
var qInteger = Array(repeating: Complex(), count: n)
// Copy the coefficents into the real part of complex number and pad zeros to remaining terms.
for i in 0..<n/2 {
pInteger[i] = Complex(real: p[i], imaginary: 0)
qInteger[i] = Complex(real: q[i], imaginary: 0)
}
for i in n/2..<n {
pInteger[i] = Complex(real: 0, imaginary: 0)
qInteger[i] = Complex(real: 0, imaginary: 0)
}
let power = 1
// Apply the FFT to the two factors
let solP = DC4.fastFourierTransform(pInteger, omega, n, power)
let solQ = DC4.fastFourierTransform(qInteger, omega, n, power)
// Multiply the results point-wise recursive
var finalSol = Array(repeating: Complex(), count: n)
for i in 0..<n {
finalSol[i] = solP[i]*solQ[i]
}
// Apply the FFT to the point-wise product
let poly = DC4.fastFourierTransform(finalSol, omegaInverse, n, power)
var result = Array(repeating: 0.0, count: n - 1)
for i in 0..<n - 1 {
result[i] = poly[i].real / Double(n)
}
return result
}
/**
Calculate the omega ω value.
- Parameter n: The length of the coefficient array.
- Parameter inverse: Set to true to calculate inverse values.
- Returns: The coefficients of the omega w in the formula.
*/
func getOmega(_ n: Int, _ inverse: Bool) -> [Complex] {
var omega = Array(repeating: Complex(), count: n)
for i in 0..<n {
omega[i] = Complex(real: cos(2.0 * Double(i) * Double.pi / Double(n)), imaginary: (inverse ? -1.0 : 1.0) * sin(2.0 * Double(i) * Double.pi / Double(n)))
}
return omega
}
}