-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathdl_and_preprop_dataset.py
executable file
·162 lines (136 loc) · 6.27 KB
/
dl_and_preprop_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python
"""Download and preprocess datasets. Supported datasets are:
* English female: LJSpeech (https://keithito.com/LJ-Speech-Dataset/)
* Mongolian male: MBSpeech (Mongolian Bible)
"""
__author__ = 'Erdene-Ochir Tuguldur'
import os
import sys
import csv
import time
import argparse
import fnmatch
import librosa
import pandas as pd
from hparams import HParams as hp
from zipfile import ZipFile
from audio import preprocess
from utils import download_file
from datasets.mb_speech import MBSpeech
from datasets.lj_speech import LJSpeech
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--dataset", required=True, choices=['ljspeech', 'mbspeech'], help='dataset name')
args = parser.parse_args()
if args.dataset == 'ljspeech':
dataset_file_name = 'LJSpeech-1.1.tar.bz2'
datasets_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'datasets')
dataset_path = os.path.join(datasets_path, 'LJSpeech-1.1')
if os.path.isdir(dataset_path) and False:
print("LJSpeech dataset folder already exists")
sys.exit(0)
else:
dataset_file_path = os.path.join(datasets_path, dataset_file_name)
if not os.path.isfile(dataset_file_path):
url = "http://data.keithito.com/data/speech/%s" % dataset_file_name
download_file(url, dataset_file_path)
else:
print("'%s' already exists" % dataset_file_name)
print("extracting '%s'..." % dataset_file_name)
os.system('cd %s; tar xvjf %s' % (datasets_path, dataset_file_name))
# pre process
print("pre processing...")
lj_speech = LJSpeech([])
preprocess(dataset_path, lj_speech)
elif args.dataset == 'mbspeech':
dataset_name = 'MBSpeech-1.0'
datasets_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'datasets')
dataset_path = os.path.join(datasets_path, dataset_name)
if os.path.isdir(dataset_path) and False:
print("MBSpeech dataset folder already exists")
sys.exit(0)
else:
bible_books = ['01_Genesis', '02_Exodus', '03_Leviticus']
for bible_book_name in bible_books:
bible_book_file_name = '%s.zip' % bible_book_name
bible_book_file_path = os.path.join(datasets_path, bible_book_file_name)
if not os.path.isfile(bible_book_file_path):
url = "https://s3.us-east-2.amazonaws.com/bible.davarpartners.com/Mongolian/" + bible_book_file_name
download_file(url, bible_book_file_path)
else:
print("'%s' already exists" % bible_book_file_name)
print("extracting '%s'..." % bible_book_file_name)
zipfile = ZipFile(bible_book_file_path)
zipfile.extractall(datasets_path)
dataset_csv_file_path = os.path.join(datasets_path, '%s-csv.zip' % dataset_name)
dataset_csv_extracted_path = os.path.join(datasets_path, '%s-csv' % dataset_name)
if not os.path.isfile(dataset_csv_file_path):
url = "https://www.dropbox.com/s/dafueq0w278lbz6/%s-csv.zip?dl=1" % dataset_name
download_file(url, dataset_csv_file_path)
else:
print("'%s' already exists" % dataset_csv_file_path)
print("extracting '%s'..." % dataset_csv_file_path)
zipfile = ZipFile(dataset_csv_file_path)
zipfile.extractall(datasets_path)
sample_rate = 44100 # original sample rate
total_duration_s = 0
if not os.path.isdir(dataset_path):
os.mkdir(dataset_path)
wavs_path = os.path.join(dataset_path, 'wavs')
if not os.path.isdir(wavs_path):
os.mkdir(wavs_path)
metadata_csv = open(os.path.join(dataset_path, 'metadata.csv'), 'w')
metadata_csv_writer = csv.writer(metadata_csv, delimiter='|')
def _normalize(s):
"""remove leading '-'"""
s = s.strip()
if s[0] == '—' or s[0] == '-':
s = s[1:].strip()
return s
def _get_mp3_file(book_name, chapter):
book_download_path = os.path.join(datasets_path, book_name)
wildcard = "*%02d - DPI.mp3" % chapter
for file_name in os.listdir(book_download_path):
if fnmatch.fnmatch(file_name, wildcard):
return os.path.join(book_download_path, file_name)
return None
def _convert_mp3_to_wav(book_name, book_nr):
global total_duration_s
chapter = 1
while True:
try:
i = 0
chapter_csv_file_name = os.path.join(dataset_csv_extracted_path, "%s_%02d.csv" % (book_name, chapter))
df = pd.read_csv(chapter_csv_file_name, sep="|")
print("processing %s..." % chapter_csv_file_name)
mp3_file = _get_mp3_file(book_name, chapter)
print("processing %s..." % mp3_file)
assert mp3_file is not None
samples, sr = librosa.load(mp3_file, sr=sample_rate, mono=True)
assert sr == sample_rate
for index, row in df.iterrows():
start, end, sentence = row['start'], row['end'], row['sentence']
assert end > start
duration = end - start
duration_s = int(duration / sample_rate)
if duration_s > 10:
continue # only audios shorter than 10s
total_duration_s += duration_s
i += 1
sentence = _normalize(sentence)
fn = "MB%d%02d-%04d" % (book_nr, chapter, i)
metadata_csv_writer.writerow([fn, sentence, sentence]) # same format as LJSpeech
wav = samples[start:end]
wav = librosa.resample(wav, sample_rate, hp.sr) # use same sample rate as LJSpeech
librosa.output.write_wav(os.path.join(wavs_path, fn + ".wav"), wav, hp.sr)
chapter += 1
except FileNotFoundError:
break
_convert_mp3_to_wav('01_Genesis', 1)
_convert_mp3_to_wav('02_Exodus', 2)
_convert_mp3_to_wav('03_Leviticus', 3)
metadata_csv.close()
print("total audio duration: %ss" % (time.strftime('%H:%M:%S', time.gmtime(total_duration_s))))
# pre process
print("pre processing...")
mb_speech = MBSpeech([])
preprocess(dataset_path, mb_speech)