forked from lidanqing-intel/deep_md_test
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_test.cc
executable file
·159 lines (135 loc) · 4.86 KB
/
infer_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#include "paddle/include/paddle_inference_api.h"
#include <chrono>
#include <glog/logging.h>
#include <gflags/gflags.h>
#include <iostream>
#include <fstream>
#include <memory>
#include <numeric>
DEFINE_string(dirname, "model.ckpt", "Directory of the inference model.");
DEFINE_bool(use_mkldnn, false, "Should mkldnn be used");
DEFINE_bool(use_mt, false, "Multithreading");
DEFINE_bool(debug, false, "Enable IR Debug");
namespace paddle_infer {
using Time = decltype(std::chrono::high_resolution_clock::now());
Time time() { return std::chrono::high_resolution_clock::now(); };
double time_diff(Time t1, Time t2) {
typedef std::chrono::microseconds ms;
auto diff = t2 - t1;
ms counter = std::chrono::duration_cast<ms>(diff);
return counter.count() / 1000.0;
}
void PrepareTRTConfig(Config *config) {
config->SetModel(FLAGS_dirname + "/model.pdmodel", FLAGS_dirname + "/model.pdiparams");
//config->EnableUseGpu(100, 0);
//Uncomment for CPU Backend
config->DisableGpu();
if(FLAGS_use_mkldnn) {
config->SwitchIrOptim();
config->EnableMKLDNN();
if(FLAGS_use_mt)
config->SetCpuMathLibraryNumThreads(12);
config->SwitchIrDebug();
}
}
bool test_map_cnn(int batch_size, int repeat) {
Config config;
PrepareTRTConfig(&config);
auto predictor = CreatePredictor(config);
int channels = 3;
int height = 224;
int width = 224;
int input_num = channels * height * width * batch_size;
// prepare inputs
std::vector<float> input(input_num, 0);
auto input_names = predictor->GetInputNames();
std::cout << "name: " << input_names[0] << std::endl;
auto input_t = predictor->GetInputHandle(input_names[0]);
input_t->Reshape({batch_size, channels, height, width});
input_t->CopyFromCpu(input.data());
// run
auto time1 = time();
for (size_t i = 0; i < repeat; i++) {
CHECK(predictor->Run());
}
auto time2 = time();
std::cout << "batch: " << batch_size << " predict cost: "
<< time_diff(time1, time2) / static_cast<float>(repeat) << "ms"
<< std::endl;
// get the output
std::vector<float> out_data;
auto output_names = predictor->GetOutputNames();
auto output_t = predictor->GetOutputHandle(output_names[0]);
std::vector<int> output_shape = output_t->shape();
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
std::multiplies<int>());
out_data.resize(out_num);
output_t->CopyToCpu(out_data.data());
for (size_t j = 0; j < out_num; j += 100) {
LOG(INFO) << "output[" << j << "]: " << out_data[j];
}
return true;
}
template<typename T>
void ReadFromBinary(const std::string& path,
int& rank,
std::vector<int>& shape,
std::vector<T>& data) {
// open the file:
float f;
std::ifstream file(path, std::ios::binary);
file.read(reinterpret_cast<char*>(&f), sizeof(float));
rank = static_cast<int>(f);
for(size_t i=0; i<rank; i++) {
file.read(reinterpret_cast<char*>( &f ), sizeof(float));
shape.push_back(static_cast<int>(f));
}
while (file.read(reinterpret_cast<char*>(&f), sizeof(float))) {
data.push_back(static_cast<T>(f));
}
}
template<typename T>
void ConfigureInputs(const std::string& filename,
const std::string& input_name,
const std::shared_ptr<Predictor>& predictor) {
// Read Input
int rank;
std::vector<int> shape;
std::vector<T> data;
ReadFromBinary<T>(filename, rank, shape, data);
// Set Input
auto tensor = predictor->GetInputHandle(input_name);
tensor->Reshape(shape);
tensor->CopyFromCpu(data.data());
}
void test_dp_infer(void) {
Config config;
PrepareTRTConfig(&config);
auto predictor = CreatePredictor(config);
// prepare inputs
auto input_names = predictor->GetInputNames();
// coord_
ConfigureInputs<float>("data_convert/coord.bin", input_names[0], predictor);
ConfigureInputs<int>("data_convert/type.bin", input_names[1], predictor);
ConfigureInputs<int>("data_convert/natoms_vec.bin", input_names[2], predictor);
ConfigureInputs<float>("data_convert/box.bin", input_names[3], predictor);
ConfigureInputs<int>("data_convert/default_mesh.bin", input_names[4], predictor);
predictor->Run();
std::vector<float> out_data;
auto output_names = predictor->GetOutputNames();
auto output_t = predictor->GetOutputHandle(output_names[0]);
std::vector<int> output_shape = output_t->shape();
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
std::multiplies<int>());
out_data.resize(out_num);
output_t->CopyToCpu(out_data.data());
for (size_t j = 0; j < out_num; j += 100) {
LOG(INFO) << "output[" << j << "]: " << out_data[j];
}
}
} // namespace paddle_infer
int main(int argc, char *argv[]) {
google::ParseCommandLineFlags(&argc, &argv, true);
paddle_infer::test_dp_infer();
return 0;
}