-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOrder_of_an_integer.m
66 lines (53 loc) · 1.63 KB
/
Order_of_an_integer.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
%Find the Order of an integer a modulo m
% The congruence
% a^x≡ 1 (mod m) ----(1)
% is solvable if and only if gcd(a,m) = 1.
% The reason: by the Fermat-Euler theorem,
% a^φ(m)≡ 1 (mod m) if gcd(a,m) = 1 ------(2)
%
% That is, there is at least one solution of the congruence (1), x = φ(m) .
% The order of an integer a modulo m is the smallest positive value of x which satisfies the congruence -
% a^x≡ 1 (mod m) ; gcd(a,m)=1
%
% Theorem:
% Let, [order of a modulo m] = d, and there is an integer h such that
% a^h≡ 1 (mod m) => d divides h.
% Since (2), a^φ(m)≡ 1 (mod m) => d divides φ(m)
clc ; clear ;
m=385 ; a= 2;
%m=9 ; a= 3;
phi_m = EulerTotient(m) ;
div_phi = find_divisors(phi_m) ;
if (gcd(a,m)==1)
for x = div_phi
if powermod(a,x,m)==1 % a^x≡ 1 (mod m
order = x ;
break;
end
end
fprintf("The order of %d modulo %d is %d.\n",a,m,order);
else
error('Error. \n For the congruence a^x ≡ 1 (mod m) to be solvable, a & m must be coprime. i.e gcd(a,m) = 1')
end
function phi = EulerTotient(num)
if (isprime(num))
phi = num - 1;
else
count = 0 ;
for k=1:num
if(gcd(k,num)==1)
count = count +1 ;
end
phi = count ;
end
end
end
function divisors = find_divisors(n) %find divisors of an integer
divisors=[];
for i=1:n
if mod(n,i)==0
divisors=[divisors,i];
end
end
divisors;
end