-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathmetrics.py
240 lines (197 loc) · 9.73 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import numpy as np
import cv2
import os, sys
import pandas as pd
from LPIPSmodels import util
import LPIPSmodels.dist_model as dm
from skimage.measure import compare_ssim
from absl import flags
flags.DEFINE_string('output', None, 'the path of output directory')
flags.DEFINE_string('results', None, 'the list of paths of result directory')
flags.DEFINE_string('targets', None, 'the list of paths of target directory')
FLAGS = flags.FLAGS
FLAGS(sys.argv)
if(not os.path.exists(FLAGS.output)):
os.mkdir(FLAGS.output)
# The operation used to print out the configuration
def print_configuration_op(FLAGS):
print('[Configurations]:')
for name, value in FLAGS.flag_values_dict().items():
print('\t%s: %s'%(name, str(value)))
print('End of configuration')
# custom Logger to write Log to file
def listPNGinDir(dirpath):
filelist = os.listdir(dirpath)
filelist = [_ for _ in filelist if _.endswith(".png")]
filelist = [_ for _ in filelist if not _.startswith("IB")]
filelist = sorted(filelist)
filelist.sort(key=lambda f: int(''.join(list(filter(str.isdigit, f))) or -1))
result = [os.path.join(dirpath,_) for _ in filelist if _.endswith(".png")]
return result
def _rgb2ycbcr(img, maxVal=255):
##### color space transform, originally from /~https://github.com/yhjo09/VSR-DUF #####
O = np.array([[16],
[128],
[128]])
T = np.array([[0.256788235294118, 0.504129411764706, 0.097905882352941],
[-0.148223529411765, -0.290992156862745, 0.439215686274510],
[0.439215686274510, -0.367788235294118, -0.071427450980392]])
if maxVal == 1:
O = O / 255.0
t = np.reshape(img, (img.shape[0]*img.shape[1], img.shape[2]))
t = np.dot(t, np.transpose(T))
t[:, 0] += O[0]
t[:, 1] += O[1]
t[:, 2] += O[2]
ycbcr = np.reshape(t, [img.shape[0], img.shape[1], img.shape[2]])
return ycbcr
def to_uint8(x, vmin, vmax):
##### color space transform, originally from /~https://github.com/yhjo09/VSR-DUF #####
x = x.astype('float32')
x = (x-vmin)/(vmax-vmin)*255 # 0~255
return np.clip(np.round(x), 0, 255)
def psnr(img_true, img_pred):
##### PSNR with color space transform, originally from /~https://github.com/yhjo09/VSR-DUF #####
Y_true = _rgb2ycbcr(to_uint8(img_true, 0, 255), 255)[:,:,0]
Y_pred = _rgb2ycbcr(to_uint8(img_pred, 0, 255), 255)[:,:,0]
diff = Y_true - Y_pred
rmse = np.sqrt(np.mean(np.power(diff,2)))
return 20*np.log10(255./rmse)
def ssim(img_true, img_pred): ##### SSIM #####
Y_true = _rgb2ycbcr(to_uint8(img_true, 0, 255), 255)[:,:,0]
Y_pred = _rgb2ycbcr(to_uint8(img_pred, 0, 255), 255)[:,:,0]
return compare_ssim(Y_true, Y_pred, data_range=Y_pred.max() - Y_pred.min())
def crop_8x8( img ):
ori_h = img.shape[0]
ori_w = img.shape[1]
h = (ori_h//32) * 32
w = (ori_w//32) * 32
while(h > ori_h - 16):
h = h - 32
while(w > ori_w - 16):
w = w - 32
y = (ori_h - h) // 2
x = (ori_w - w) // 2
crop_img = img[y:y+h, x:x+w]
return crop_img, y, x
class Logger(object):
def __init__(self):
self.terminal = sys.stdout
filename = "metricsfile.txt"
self.log = open(os.path.join(FLAGS.output, filename), "a")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.log.flush()
sys.stdout = Logger()
print_configuration_op(FLAGS)
result_list = FLAGS.results.split(',')
target_list = FLAGS.targets.split(',')
folder_n = len(result_list)
model = dm.DistModel()
model.initialize(model='net-lin',net='alex',use_gpu=True)
cutfr = 2
# maxV = 0.4, for line 154-166
keys = ["PSNR", "SSIM", "LPIPS", "tOF", "tLP100"] # keys = ["LPIPS"]
sum_dict = dict.fromkeys(["FrameAvg_"+_ for _ in keys], 0)
len_dict = dict.fromkeys(keys, 0)
avg_dict = dict.fromkeys(["Avg_"+_ for _ in keys], 0)
folder_dict = dict.fromkeys(["FolderAvg_"+_ for _ in keys], 0)
for folder_i in range(folder_n):
result = listPNGinDir(result_list[folder_i])
target = listPNGinDir(target_list[folder_i])
image_no = len(target)
list_dict = {}
for key_i in keys:
list_dict[key_i] = []
for i in range(cutfr, image_no-cutfr):
output_img = cv2.imread(result[i])[:,:,::-1]
target_img = cv2.imread(target[i])[:,:,::-1]
msg = "frame %d, tar %s, out %s, "%(i, str(target_img.shape), str(output_img.shape))
if( target_img.shape[0] < output_img.shape[0]) or ( target_img.shape[1] < output_img.shape[1]): # target is not dividable by 4
output_img = output_img[:target_img.shape[0],:target_img.shape[1]]
print(result[i])
if "tOF" in keys:# tOF
output_grey = cv2.cvtColor(output_img, cv2.COLOR_RGB2GRAY)
target_grey = cv2.cvtColor(target_img, cv2.COLOR_RGB2GRAY)
if (i > cutfr): # temporal metrics
target_OF=cv2.calcOpticalFlowFarneback(pre_tar_grey, target_grey, None, 0.5, 3, 15, 3, 5, 1.2, 0)
output_OF=cv2.calcOpticalFlowFarneback(pre_out_grey, output_grey, None, 0.5, 3, 15, 3, 5, 1.2, 0)
target_OF, ofy, ofx = crop_8x8(target_OF)
output_OF, ofy, ofx = crop_8x8(output_OF)
OF_diff = np.absolute(target_OF - output_OF)
if False: # for motion visualization
tOFpath = os.path.join(FLAGS.output,"%03d_tOF"%folder_i)
if(not os.path.exists(tOFpath)): os.mkdir(tOFpath)
hsv = np.zeros_like(output_img)
hsv[...,1] = 255
out_path = os.path.join(tOFpath, "flow_%04d.jpg" %i)
mag, ang = cv2.cartToPolar(OF_diff[...,0], OF_diff[...,1])
# print("tar max %02.6f, min %02.6f, avg %02.6f" % (mag.max(), mag.min(), mag.mean()))
mag = np.clip(mag, 0.0, maxV)/maxV
hsv[...,0] = ang*180/np.pi/2
hsv[...,2] = mag * 255.0 #
bgr = cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR)
cv2.imwrite(out_path, bgr)
OF_diff = np.sqrt(np.sum(OF_diff * OF_diff, axis = -1)) # l1 vector norm
# OF_diff, ofy, ofx = crop_8x8(OF_diff)
list_dict["tOF"].append( OF_diff.mean() )
msg += "tOF %02.2f, " %(list_dict["tOF"][-1])
pre_out_grey = output_grey
pre_tar_grey = target_grey
target_img, ofy, ofx = crop_8x8(target_img)
output_img, ofy, ofx = crop_8x8(output_img)
if "PSNR" in keys:# psnr
list_dict["PSNR"].append( psnr(target_img, output_img) )
msg +="psnr %02.2f" %(list_dict["PSNR"][-1])
if "SSIM" in keys:# ssim
list_dict["SSIM"].append( ssim(target_img, output_img) )
msg +=", ssim %02.2f" %(list_dict["SSIM"][-1])
if "LPIPS" in keys or "tLP100" in keys:
img0 = util.im2tensor(target_img) # RGB image from [-1,1]
img1 = util.im2tensor(output_img)
if "LPIPS" in keys: # LPIPS
dist01 = model.forward(img0,img1)
list_dict["LPIPS"].append( dist01[0] )
msg +=", lpips %02.2f" %(dist01[0])
if "tLP100" in keys and (i > cutfr):# tLP, temporal metrics
dist0t = model.forward(pre_img0, img0)
dist1t = model.forward(pre_img1, img1)
# print ("tardis %f, outdis %f" %(dist0t, dist1t))
dist01t = np.absolute(dist0t - dist1t) * 100.0 ##########!!!!!
list_dict["tLP100"].append( dist01t[0] )
msg += ", tLPx100 %02.2f" %(dist01t[0])
pre_img0 = img0
pre_img1 = img1
msg +=", crop (%d, %d)" %(ofy, ofx)
print(msg)
mode = 'w' if folder_i==0 else 'a'
pd_dict = {}
for cur_num_data in keys:
num_data = cur_num_data+"_%02d" % folder_i
cur_list = np.float32(list_dict[cur_num_data])
pd_dict[num_data] = pd.Series(cur_list)
num_data_sum = cur_list.sum()
num_data_len = cur_list.shape[0]
num_data_mean = num_data_sum / num_data_len
print("%s, max %02.4f, min %02.4f, avg %02.4f" %
(num_data, cur_list.max(), cur_list.min(), num_data_mean))
if folder_i == 0:
avg_dict["Avg_"+cur_num_data] = [num_data_mean]
else:
avg_dict["Avg_"+cur_num_data] += [num_data_mean]
sum_dict["FrameAvg_"+cur_num_data] += num_data_sum
len_dict[cur_num_data] += num_data_len
folder_dict["FolderAvg_"+cur_num_data] += num_data_mean
pd.DataFrame(pd_dict).to_csv(os.path.join(FLAGS.output,"metrics.csv"), mode=mode)
for num_data in keys:
sum_dict["FrameAvg_"+num_data] = pd.Series([sum_dict["FrameAvg_"+num_data] / len_dict[num_data]])
folder_dict["FolderAvg_"+num_data] = pd.Series([folder_dict["FolderAvg_"+num_data] / folder_n])
avg_dict["Avg_"+num_data] = pd.Series(np.float32(avg_dict["Avg_"+num_data]))
print("%s, total frame %d, total avg %02.4f, folder avg %02.4f" %
(num_data, len_dict[num_data], sum_dict["FrameAvg_"+num_data][0], folder_dict["FolderAvg_"+num_data][0]))
pd.DataFrame(avg_dict).to_csv(os.path.join(FLAGS.output,"metrics.csv"), mode='a')
pd.DataFrame(folder_dict).to_csv(os.path.join(FLAGS.output,"metrics.csv"), mode='a')
pd.DataFrame(sum_dict).to_csv(os.path.join(FLAGS.output,"metrics.csv"), mode='a')
print("Finished.")