-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlinear_evaluation.py
153 lines (113 loc) · 4.47 KB
/
linear_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
import torch
import os
import torchvision
import utils
import simclr
from PIL import Image
import json
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report
# making a command line interface
parser = argparse.ArgumentParser(description="This is the command line interface for the linear evaluation model")
parser.add_argument('datapath', type=str ,help="Path to the data root folder which contains train and test folders")
parser.add_argument('model_path', type=str, help="Path to the trained self-supervised model")
parser.add_argument('respath', type=str, help="Path to the results where the evaluation metrics would be stored. ")
parser.add_argument('-bs','--batch_size',default=250, type=int, help="The batch size for evaluation")
parser.add_argument('-nw','--num_workers',default=2,type=int,help="The number of workers for loading data")
parser.add_argument('-c','--cuda',action='store_true')
parser.add_argument('--multiple_gpus', action='store_true')
parser.add_argument('--remove_top_layers', default=1, type=int)
class TrainDataset(torch.utils.data.Dataset):
def __init__(self, args):
self.args = args
with open(os.path.join(args.datapath,'train','train.json')) as f:
self.filedict = json.load(f)
with open(os.path.join(args.datapath,'mapper.json')) as f:
self.mapper = json.load(f)
self.filenames = list(self.filedict)
def __len__(self):
return len(self.filenames)
def tensorify(self, img):
return torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(
torchvision.transforms.ToTensor()(img)
)
def __getitem__(self, idx):
return {
'image':self.tensorify(
torchvision.transforms.Resize((224, 224))(
Image.open(os.path.join(args.datapath, 'train', self.filenames[idx])).convert('RGB')
)
),
'label':self.mapper[self.filedict[self.filenames[idx]]]
}
class TestDataset(torch.utils.data.Dataset):
def __init__(self, args):
self.args = args
with open(os.path.join(args.datapath,'test','test.json')) as f:
self.filedict = json.load(f)
with open(os.path.join(args.datapath,'mapper.json')) as f:
self.mapper = json.load(f)
self.filenames = list(self.filedict)
def __len__(self):
return len(self.filenames)
def tensorify(self, img):
return torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(
torchvision.transforms.ToTensor()(img)
)
def __getitem__(self, idx):
return {
'image':self.tensorify(
torchvision.transforms.Resize((224, 224))(
Image.open(os.path.join(args.datapath, 'test', self.filenames[idx])).convert('RGB')
)
),
'label':self.mapper[self.filedict[self.filenames[idx]]]
}
if __name__ == '__main__':
args = parser.parse_args()
args.device = torch.device('cuda' if args.cuda else 'cpu')
model = utils.model.get_model(args)
dataloaders = {}
dataloaders['train'] = torch.utils.data.DataLoader(
TrainDataset(args),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers
)
dataloaders['test'] = torch.utils.data.DataLoader(
TestDataset(args),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers
)
simclrobj = simclr.SimCLR(
model,
None,
dataloaders,
None
)
simclrobj.load_model(args)
reprs = {}
for mode in ['train', 'test']:
reprs[mode] = simclrobj.get_representations(args, mode=mode)
scaler = StandardScaler().fit(reprs['train']['X'])
Xtrain = scaler.transform(reprs['train']['X'])
Xtest = scaler.transform(reprs['test']['X'])
clf = LogisticRegression(
multi_class='multinomial',
max_iter=1000,
n_jobs=16,
).fit(
Xtrain, reprs['train']['Y']
)
ypred = clf.predict(Xtest)
print(
classification_report(
reprs['test']['Y'],
ypred,
digits=4,
target_names=['car', 'airplane', 'elephant', 'dog', 'cat'])
)