-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomplete_evaluation.py
63 lines (50 loc) · 1.82 KB
/
complete_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
""" This module is to evaluate the model with complete test dataset and export them to txt file. """
import torch
import logging
from types import SimpleNamespace
from utils.data_helper import DataSet
from utils.link_prediction import run_link_prediction
from model.framework import LAN
logger = logging.getLogger()
def evaluate(model_type, model_path, config):
set_up_logger()
# set up GPU
config.device = torch.device("cuda:0")
# load the dataset
dataset = DataSet(config, logger)
model = model_type(config, dataset.num_training_entity, dataset.num_relation)
model.load_state_dict(torch.load(model_path))
model.to(config.device)
# evaluation
model.eval()
with torch.no_grad():
run_link_prediction(config, model, dataset, 0, logger, is_test=True)
print("Evaluation completes.")
def set_up_logger():
logger.setLevel(logging.INFO)
handler = logging.FileHandler("complete_evaluation.log", 'w+')
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s: %(message)s', datefmt='%Y/%m/%d %H:%M:%S')
handler.setFormatter(formatter)
logger.addHandler(handler)
if __name__ == '__main__':
# simple config information, which should match with the train config
config = SimpleNamespace()
config.data_dir = "data/FB15k-237"
config.max_neighbor = 64
config.use_relation = 1
config.margin = 1.0
config.embedding_dim = 100
config.corrupt_mode = "both"
config.evaluate_size = 0
config.N_1 = 60
config.N_2 = 30
config.n_neg = 1
config.learning_rate = 0.001
config.aggregate_type = "LAN"
config.score_function = "TransE"
config.loss_function = "TransE"
config.weight_decay = 0
config.is_use_NSCaching = False
config.attention_record = False
evaluate(LAN, "data/FB15k-237/train_model.pt", config)