-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnetra_daemon.py
executable file
·118 lines (99 loc) · 3.62 KB
/
netra_daemon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/env python
"""
Netra Daemon Script.
This script is required to be run on Raspberry Pi device connected to a camera.
Please note that describe mode requires a Netra_Vision server accessible on a particular IP address. Change the IP address by modifying the global IP variable
"""
import os
import time
import argparse
import requests
import json
from libs.cloud import vision_api
from libs.see import camera_pi
from libs.nlp import speak
from sys import getsizeof
IP='192.168.43.118:5000'
def face_mode():
while True:
start_time = time.time()
frame = pi_cam.get_frame()
end = time.time() - start_time
print('Time taken to capture %fs' % end)
start_time = time.time()
label_response = vision_api.detect_faces(Content=frame)
end = time.time() - start_time
print('Time taken to inference %fs' % end)
print(label_response)
speak.speak_face(label_response)
def describe_mode():
addr = IP
test_url = addr + '/describe_image'
# prepare headers for http request
content_type = 'image/jpeg'
headers = {'content-type': content_type}
while True:
start_time = time.time()
frame = pi_cam.get_frame()
end = time.time() - start_time
print('Time taken to capture %fs' % end)
start_time = time.time()
response = requests.post(test_url, data=frame, headers=headers)
end = time.time() - start_time
print('Time taken to inference %fs' % end)
response_data=json.loads(response.text)
prediction=response_data['data'][0]
if(prediction['prob']>0.001):
print(prediction['sentence']+': '+str(prediction['prob']))
speak.say(prediction['sentence'])
def raw_mode():
while True:
start_time = time.time()
frame = pi_cam.get_frame()
end = time.time() - start_time
print('Time taken to capture %fs' % end)
print('Image size : %d bytes' % getsizeof(frame))
start_time = time.time()
label_response = vision_api.label_captions(Content=frame)
end = time.time() - start_time
print('Time taken to inference %fs' % end)
# Gather useful information from the response
annotations = label_response.label_annotations
speak.speak_vision_labels(annotations)
def text_mode():
while True:
start_time = time.time()
frame = pi_cam.get_frame()
end = time.time() - start_time
print('Time taken to capture %fs' % end)
print('Image size : %d bytes' % getsizeof(frame))
start_time = time.time()
label_response = vision_api.detect_text(Content=frame)
end = time.time() - start_time
print('Time taken to inference %fs' % end)
# Gather useful information from the response
annotations = label_response
print(annotations)
speak.speak_text(annotations)
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Start Netra Daemon')
parser.add_argument('mode',type=str,help='Available modes: raw, face, text, describe')
args = parser.parse_args()
mode=args.mode
print('Starting Netra Daemon')
print('Initializing Camera')
speak.say('Initializing Netra Daemon. Please wait!')
if (mode=='describe'):
pi_cam=camera_pi.Camera((1280,720))
else:
pi_cam=camera_pi.Camera((512,512))
speak.say('Netra Daemon started! Welcome user!')
if(mode=='raw'):
raw_mode()
elif(mode=='face'):
face_mode()
elif(mode=='text'):
text_mode()
elif(mode=='describe'):
describe_mode()
#print(label_response)