-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdetermine_preflare_irradiance.py
290 lines (240 loc) · 15 KB
/
determine_preflare_irradiance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Standard modules
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import multiprocessing as mp
import astropy.units as u
# Custom modules
from jpm_number_printing import latex_float
# Configuration
import jedi_config
__author__ = 'James Paul Mason'
__contact__ = 'jmason86@gmail.com'
def determine_preflare_irradiance(light_curve_df, estimated_time_of_peak_start,
max_median_diff_threshold=1.5, std_threshold=1.0,
plot_path_filename=None):
"""Determine pre-flare irradiance level in a solar light curve.
Or, more generally, find the pre-peak level in a time series.
Inputs:
light_curve_df [pd DataFrame]: A pandas DataFrame with a DatetimeIndex and a column for irradiance.
estimated_time_of_peak_start [metatime]: The estimated time that the dramatic increase starts.
This could come from, e.g., GOES/XRS.
Optional Inputs:
max_median_diff_threshold [float]: The maximum allowed difference in medians between the 3 pre-flare windows
in percent terms. This value gets multiplied by the mean of the stds from
each sub-window and is then compared to the max_median_diff. The default is 1.5.
std_threshold [float]: The maximum allowed standard deviation in the pre-flare windows in percent
terms. The default is 1.0.
plot_path_filename [str]: Set to a path and filename in order to save the summary plot to disk.
Default is None, meaning the plot will not be saved to disk.
Outputs:
preflare_irradiance [float]: The identified pre-flare irradiance level in the same units as light_curve_df.irradiance.
Optional Outputs:
None.
Example:
preflare_irradiance = determine_preflare_irradiance(light_curve_df, pd.Timestamp('2012-04-15 17:52:20.0'),
plot_path_filename='./bla.png')
"""
# Prepare the logger for verbose
if jedi_config.verbose:
jedi_config.logger.info("Running on event with peak start time of {0}.".format(estimated_time_of_peak_start))
# Verify that not all values are nan
if light_curve_df.isna().all().all():
if jedi_config.verbose:
jedi_config.logger.warning("All irradiance values are NaN. Returning.")
return np.nan
# Verify that the estimated time of the peak isn't before the light curve even starts
if estimated_time_of_peak_start < light_curve_df.index[0]:
if jedi_config.verbose:
jedi_config.logger.warning('The provided estimated_time_of_peak_start: {0} is earlier than the earliest time in the light curve: {1}'.format(estimated_time_of_peak_start, light_curve_df.index[0]))
return np.nan
# Convert irradiance to percent if not already present
if 'irradiance_percent' not in light_curve_df.columns:
median_irradiance = light_curve_df['irradiance'].median()
light_curve_df['irradiance_percent'] = (light_curve_df['irradiance'].values - median_irradiance) / median_irradiance * 100.
if jedi_config.verbose:
jedi_config.logger.info("Converted irradiance to percent, baselining median in entire pre-flare window.")
# Divide the pre-flare period into 3 equal-length windows
windows = np.array_split(light_curve_df[:estimated_time_of_peak_start], 3)
if jedi_config.verbose:
jedi_config.logger.info("Divided pre-flare period into 3 equal-length windows.")
# Compute median and σ in each window
medians = [windowed_df['irradiance_percent'].median() for windowed_df in windows]
medians_abs = [windowed_df['irradiance'].median() for windowed_df in windows]
stds = np.array([windowed_df['irradiance_percent'].std() for windowed_df in windows])
if jedi_config.verbose:
jedi_config.logger.info("Computed medians and standard deviations in each window.")
# Compute max difference between the medians
max_median_diff = np.max(np.abs(np.append(np.diff(medians), medians[2] - medians[0])))
# Compare medians and σs in each window to thresholds
failed_median_threshold = False
failed_std_threshold = False
if np.all(np.isnan(stds)):
if jedi_config.verbose:
jedi_config.logger.warning('Cannot compute pre-flare irradiance. All standard deviations are nan.')
failed_std_threshold = True
else:
if max_median_diff > max_median_diff_threshold * np.mean(stds):
if jedi_config.verbose:
jedi_config.logger.warning(
'Cannot compute pre-flare irradiance. Maximum difference in window medians ({0}) exceeded threshold ({1}).'.format(max_median_diff, max_median_diff_threshold * np.mean(stds)))
failed_median_threshold = True
if (stds < std_threshold).sum() < 2:
if jedi_config.verbose:
jedi_config.logger.warning('Cannot compute pre-flare irradiance. Standard deviation in more than 1 window is larger than threshold ({0}).'.format(std_threshold))
failed_std_threshold = True
# Compute pre-flare irradiance (mean of the medians in absolute units)
if failed_median_threshold or failed_std_threshold:
preflare_irradiance = np.nan
else:
preflare_irradiance = np.mean([windowed_df['irradiance'].median() for windowed_df in windows])
if jedi_config.verbose:
jedi_config.logger.info("Computed pre-flare irradiance: {0}".format(preflare_irradiance))
# Produce summary plot
if plot_path_filename:
plt.style.use('jpm-transparent-light')
from matplotlib import dates
from matplotlib.patches import Rectangle
plt.close('all')
light_curve_df = light_curve_df.drop('irradiance_percent', 1)
try:
ax = light_curve_df[:estimated_time_of_peak_start].plot(legend=False, c='grey')
start_date = light_curve_df.index.values[0]
start_date_string = pd.to_datetime(str(start_date))
plt.title('Pre-flare Windows')
plt.xlabel(start_date_string.strftime('%Y-%m-%d %H:%M:%S'))
plt.ylabel('Irradiance [W m$^{-2}$]')
fmtr = dates.DateFormatter("%H:%M:%S")
ax.xaxis.set_major_formatter(fmtr)
ax.xaxis.set_major_locator(dates.HourLocator())
ax2 = ax.twinx()
light_curve_df[:estimated_time_of_peak_start].plot(ax=ax2, legend=False, c='grey')
vals = ax2.get_yticks()
ax2.set_yticklabels(['{:3.2f}%'.format((x - median_irradiance) / median_irradiance * 100)
for x in vals])
# First window
start = dates.date2num(light_curve_df.index[0])
end = dates.date2num(windows[0].index[-1])
width = end - start
rect = Rectangle((start, 0), width, 1, color='deepskyblue', alpha=0.2)
ax.add_patch(rect)
plt.plot([windows[0].index[0], windows[0].index[-1]], [medians_abs[0], medians_abs[0]],
linestyle='dashed', c='dimgrey')
ax.text(start + width / 2.0, np.min(light_curve_df[:estimated_time_of_peak_start].irradiance),
'median$_1$ = ' + latex_float(medians[0]) + '% \n' +
'$\sigma_1$ = ' + latex_float(stds[0]) + '%',
fontsize=11, ha='center', va='bottom')
# Second window
try:
start = dates.date2num(windows[1].index[0])
end = dates.date2num(windows[1].index[-1])
width = end - start
rect = Rectangle((start, 0), width, 1, color='slateblue', alpha=0.2)
ax.add_patch(rect)
plt.plot([windows[1].index[0], windows[1].index[-1]], [medians_abs[1], medians_abs[1]],
linestyle='dashed', c='dimgrey')
ax.text(start + width / 2.0, np.min(light_curve_df[:estimated_time_of_peak_start].irradiance),
'median$_2$ = ' + latex_float(medians[1]) + '% \n' +
'$\sigma_2$ = ' + latex_float(stds[1]) + '%',
fontsize=11, ha='center', va='bottom')
if not np.isnan(preflare_irradiance):
ax.axes.axhline(y=preflare_irradiance, linewidth=2, color='tomato', linestyle='dashed')
ax.text(start + width / 2.0, np.max(light_curve_df[:estimated_time_of_peak_start].irradiance),
'pre-flare I = ' + latex_float(preflare_irradiance) + ' W m$^{-2}$',
fontsize=11, ha='center', va='top', color='tomato')
else:
ax.text(start + width / 2.0, np.max(light_curve_df[:estimated_time_of_peak_start].irradiance),
'pre-flare I = N/A \n' +
'median condition ok: ' + str(not failed_median_threshold) + '\n' +
'$\sigma$ condition ok: ' + str(not failed_std_threshold),
fontsize=11, ha='center', va='top', color='tomato')
except IndexError as error_index:
jedi_config.logger.error('{}'.format(error_index))
# Third window
try:
start = dates.date2num(windows[2].index[0])
end = dates.date2num(windows[2].index[-1])
width = end - start
rect = Rectangle((start, 0), width, 1, color='violet', alpha=0.2)
ax.add_patch(rect)
plt.plot([windows[2].index[0], windows[2].index[-1]], [medians_abs[2], medians_abs[2]],
linestyle='dashed', c='dimgrey')
ax.text(start + width / 2.0, np.min(light_curve_df[:estimated_time_of_peak_start].irradiance),
'median$_3$ = ' + latex_float(medians[2]) + '% \n' +
'$\sigma_3$ = ' + latex_float(stds[2]) + '%',
fontsize=11, ha='center', va='bottom')
ax.text(end, np.max(light_curve_df[:estimated_time_of_peak_start].irradiance),
'median diff = ' + latex_float(max_median_diff) + '% \n' +
r'thresh $\times \mu_{\sigma n}$ = ' + latex_float(max_median_diff_threshold * np.mean(stds)) + '%',
fontsize=11, ha='right', va='top')
except IndexError as error_index:
jedi_config.logger.error('{}'.format(error_index))
# Increase border so y-axes don't get cut off in savefig, even though they don't in plt.show()
plt.gcf().subplots_adjust(left=0.22)
plt.savefig(plot_path_filename)
if jedi_config.verbose:
jedi_config.logger.info("Summary plot for event with start time {0} saved to {1}".format(estimated_time_of_peak_start, plot_path_filename))
except ValueError as error:
jedi_config.logger.error('{}'.format(error))
return preflare_irradiance
def get_preflare_irradiance_all_emission_lines(flare_index):
"""Loop through all (39) of the EVE extracted emission lines and get the pre-flare irradiance for each
Inputs:
flare_index [int]: The identifier for which event in JEDI to process.
Optional Inputs:
None.
Outputs:
preflare_irradiance [float]: The identified pre-flare irradiance level in the same units as light_curve_df.irradiance.
preflare_window_start [str]: The time that the pre-flare irradiance calculation starts.
preflare_window_end [str]: The time that the pre-flare irradiance calculation ends.
Optional Outputs:
None
Example:
preflare_irradiance, preflare_window_start, preflare_window_end = get_preflare_irradiance_all_emission_lines(flare_index)
"""
if jedi_config.verbose:
jedi_config.logger.info("Running on event {0}.".format(flare_index))
# Clip EVE data from threshold_time_prior_flare_minutes prior to flare up to peak flare time
preflare_window_start = (jedi_config.goes_flare_events['peak_time'][flare_index] - (jedi_config.threshold_time_prior_flare_minutes * u.minute)).iso
preflare_window_end = (jedi_config.goes_flare_events['peak_time'][flare_index]).iso
eve_lines_preflare_time = jedi_config.eve_lines[preflare_window_start:preflare_window_end]
# Loop through the emission lines and get pre-flare irradiance for each
preflare_irradiance = []
for column in eve_lines_preflare_time:
eve_line_preflare_time = pd.DataFrame(eve_lines_preflare_time[column])
eve_line_preflare_time.columns = ['irradiance']
preflare_temp = determine_preflare_irradiance(eve_line_preflare_time,
pd.Timestamp(jedi_config.goes_flare_events['start_time'][flare_index].iso),
plot_path_filename=os.path.join(jedi_config.output_path, 'Preflare Determination', 'Event %d %s.png' % (flare_index, column)))
preflare_irradiance.append(preflare_temp)
return preflare_irradiance, preflare_window_start, preflare_window_end
def multiprocess_preflare_irradiance():
"""Multi-threaded processing of pre-flare irradiance across time-independent flares
Inputs:
preflare_indices [np int array]: The subset of flare_indices that correspond to time-independent flares.
Optional Inputs:
None.
Outputs:
preflare_irradiance [float]: The identified pre-flare irradiance level in the same units as light_curve_df.irradiance.
preflare_window_start [str]: The time that the pre-flare irradiance calculation starts.
preflare_window_end [str]: The time that the pre-flare irradiance calculation ends.
Optional Outputs:
None
Example:
preflare_irradiance, preflare_window_start, preflare_window_end = multiprocess_preflare_irradiance(preflare_indices, 4)
"""
if jedi_config.verbose:
jedi_config.logger.info("Running on {0} events with {1} threads.".format(len(jedi_config.preflare_indices), jedi_config.n_threads))
if jedi_config.n_threads == 1:
preflare_irradiances, preflare_windows_start, preflare_windows_end = zip(*map(get_preflare_irradiance_all_emission_lines, jedi_config.preflare_indices))
jedi_config.logger.info('Preparing export of dataframe.')
else:
pool = mp.Pool(processes=jedi_config.n_threads)
preflare_irradiances, preflare_windows_start, preflare_windows_end = zip(*pool.map(get_preflare_irradiance_all_emission_lines, jedi_config.preflare_indices))
pool.close()
jedi_config.logger.info('Pool closed. Preparing export of dataframe.')
preflare_irradiances = np.array(preflare_irradiances)
preflare_windows_start = preflare_windows_start
preflare_windows_end = preflare_windows_end
return preflare_irradiances, preflare_windows_start, preflare_windows_end