-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbbdf.c
312 lines (249 loc) · 9.81 KB
/
bbdf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <time.h>
#include "bbdf.h"
#include "lapacke.h"
#include "cblas.h"
// gcc t2.c -llapack -std=c99
// Two step process to compute inverse
//extern void dgetrf_ (int * m, int * n, double * A, int * LDA, int * IPIV, int * INFO);
//extern void dgetri_ (int * n, double * A, int * LDA, int * IPIV, double * WORK, int * LWORK, int * INFO);
// AX=B
//extern void dgesv_ (int * n, int * NRHS,double * A, int * LDA, int * IPIV, double * B, int * LDB, int * INFO );
// Matrix Multiplication
//extern void dgemm_(const char *TRANSA, const char *TRANSB, const int *M, const int *N, const int *K, double *ALPHA, double *A, const int *LDA, double *B, const int *LDB, double *BETA, double *C, const int *LDC);
extern void dgemm_ (char * transa, char * transb, int * m, int * n, int * k, double * alpha, double * A, int * lda, double * B, int * ldb, double * beta, double *, int * ldc);
// Scalar Maultiplication
// extern void dscal_ (int * N, double * DA, double * DX, int * INCX);
int print_matrix(int nrow, int ncol, double * M) {
for (int i=0; i<nrow; i++){
for(int j=0; j<ncol; j++){
printf("%.3f ", M[i*ncol + j]);
}
printf("\n");
}
return 0;
}
void matrix_add(int row, int col, double * A, double * B, double scalar)
{
// A = (A)+(s*B)
int elements = row*col;
for (size_t i=0; i<elements; i++){
A[i] = A[i] + scalar * B[i];
}
}
void vector_add(int row, int col, double * A, double * B, double scalar)
{
// A = (A)+(s*B)
int N = row*col;
for (size_t i=0; i<N; i++){
A[i] = A[i] + scalar * B[i];
}
}
void matrix_invm (int n, double * M, double * N, double * R)
{
// Agruments:
// n: Size of matrix M is nxn
// M: Pointer to start of Matrix, stored in an array
// R = inv(M)*N
int one = 1 ;
int elements = n*n;
int * ipiv = (int*) malloc(n*sizeof(int));
int info;
char TRANSN = 'N';
char TRANST = 'T';
double ALPHA = 1.0;
double BETA = 0.0;
// matrix inversion M = inv(M)
// dgetrf_(&n, &n, M, &n, pivotArray, &errorHandler);
info = LAPACKE_dgetrf(LAPACK_ROW_MAJOR, n, n, M, n, ipiv);
info = LAPACKE_dgetri(LAPACK_ROW_MAJOR, n, M, n, ipiv); //, lapackWorkspace0, elements);
// C(rowsA x colsB) = A(rowsA x common)*B(common x colsB)
// dgemm_(&TRANSN, &TRANSN, &colsB, &rowsA, &common, &ALPHA, B, &colsB, A, &common, &BETA, C, &colsB);
// matrix multiplication R = M(nxn)*N(nx1)
dgemm_(&TRANSN, &TRANSN, &one, &n, &n, &ALPHA, N, &one, M, &n, &BETA, R, &one) ;
}
void matrix_inv_m (int m, int n, double * A, double * C, double * B, double * G, double * tempB, double * tempG) {
// Agruments:
// m: int - A is mxm matrix
// n: int - B is mxn matrix
// int - C is nxm matrix
// A: pointer to double - Pointer to start of Matrix A, stored in contagious array
// C: pointer to double - Pointer to start of Matrix B, stored in contagious array
// B: pointer to double - Pointer to start of Matrix C, stored in contagious array
// G: pointer to double - Pointer to start of Matrix D, stored in contagious array
// tempB = C*inv(A)*B
// tempG = C*inv(A)*G
int elements = m*m;
int * ipiv = (int*) malloc(m*sizeof(int));
int info;
double * lapackWorkspace0 = (double *) malloc (elements * sizeof(double));
// matrix inversion
// Inverted matrix in again stored in A
info = LAPACKE_dgetrf(LAPACK_ROW_MAJOR, m, m, A, m, ipiv);
info = LAPACKE_dgetri(LAPACK_ROW_MAJOR, m, A, m, ipiv);
int one = 1;
char TRANSN = 'N';
char TRANST = 'T';
double ALPHA = 1.0;
double BETA = 0.0;
double * lapackWorkspace1 = (double *) malloc (n*m * sizeof(double));
// matrix multiplication lapackworkspace1 = C(n*m)*inv(A)(m*m)
// dgemm_(&TRANSN, &TRANST, &n, &m, &m, &ALPHA, C, &n, A, &m, &BETA, lapackWorkspace1, &n);
// C(rowsA x colsB) = A(rowsA x common)*B(common x colsB)
// dgemm_(&TRANSN, &TRANSN, &colsB, &rowsA, &common, &ALPHA, B, &colsB, A, &common, &BETA, C, &colsB);
dgemm_(&TRANSN, &TRANSN, &m, &n, &m, &ALPHA, A, &m, C, &m, &BETA, lapackWorkspace1, &m);
// matrix multiplication tempB = lapackworkspace1(nxm)*B(mxn)
dgemm_(&TRANSN, &TRANSN, &n, &n, &m, &ALPHA, B, &n, lapackWorkspace1, &m, &BETA, tempB, &n);
// matrix multiplication tempG = lapackworkspace1(nxm)*G(mx1)
dgemm_(&TRANSN, &TRANSN, &one, &n, &m, &ALPHA, G, &one, lapackWorkspace1, &m, &BETA, tempG, &one);
free(lapackWorkspace0);
free(lapackWorkspace1);
}
void matrix_xi(int m, int n, double * A, double * B, double * G, double * Xn, double * Xi)
{
// Xi = A*G - A*B*Xn
char TRANSN = 'N';
char TRANST = 'T';
double ALPHA = 1.0;
double BETA = 0.0;
int one = 1;
double * lapackWorkspaceAB = (double*) malloc ((m*n)*sizeof(double));
double * lapackWorkspaceX = (double*) malloc ((m*1)*sizeof(double));
// matrix multiplication Xi = A(mxm)*G(mx1)
// dgemm_(&TRANST, &TRANSN, &m, &one, &m, &ALPHA, A, &m, G, &m, &BETA, Xi, &m);
// C(rowsA x colsB) = A(rowsA x common)*B(common x colsB)
// dgemm_(&TRANSN, &TRANSN, &colsB, &rowsA, &common, &ALPHA, B, &colsB, A, &common, &BETA, C, &colsB);
dgemm_(&TRANSN, &TRANSN, &one, &m, &m, &ALPHA, G, &one, A, &m, &BETA, Xi, &one);
// matrix multiplication lapackworkspaceAB(mxn) = A(mxm)*B(mxn)
// dgemm_(&TRANSN, &TRANSN, &m, &n, &m, &ALPHA, A, &m, B, &m, &BETA, lapackWorkspaceAB, &m);
dgemm_(&TRANSN, &TRANSN, &n, &m, &m, &ALPHA, B, &n, A, &m, &BETA, lapackWorkspaceAB, &n);
// matrix multiplication lapackworkspaceX = lapackworkspaceAB(mxn)*Xn(nx1)
// dgemm_(&TRANSN, &TRANSN, &m, &one, &n, &ALPHA, lapackWorkspaceAB, &m, Xn, &n, &BETA, lapackWorkspaceX, &m);
dgemm_(&TRANSN, &TRANSN, &one, &m, &n, &ALPHA, Xn, &one, lapackWorkspaceAB, &n, &BETA, lapackWorkspaceX, &one);
// Xi = Xi - lapackworkspace2
matrix_add(m, one, Xi, lapackWorkspaceX, -1.0);
free(lapackWorkspaceAB);
free(lapackWorkspaceX);
}
void solve_bbd( int nMat, int m, int n,
struct Matrix * matA, struct Matrix * matB,
struct Matrix * matC, struct Matrix * matG,
struct Matrix * matX, struct Matrix matAN,
struct Matrix matGN, struct Matrix matXN)
{
/*
A B X G
A B X G
A B * X = G
A B X G
C C C C AN XN GN
Arguments:
nMat: Number of non border diagonal blocks (nMat = 4 in above example)
matA: Pointer to array of Struct Matrix A, diagonal matrix blocks
matB: Pointer to array of Struct Matrix B, bottom border matrix blocks
matC: Pointer to array of Struct Matrix C, right border matrix blocks
matG: Pointer to array of Struct Matrix G, vector
matX: Pointer to array of Struct Matrix X, vector
*/
double AddG[n*1];
for(int i =0; i<(n*1); i++) AddG[i] = 0;
double tempG[nMat][n*1];
double AddB[n*n];
for(int i =0; i<(n*n); i++) AddB[i] = 0;
double tempB[nMat][n*n];
clock_t tstart = clock();
// #pragma omp prallel for
for (int i=0; i<nMat; i++){
// tempB = C*inv(A)*B
// tempG = C*inv(A)*G
matrix_inv_m(m, n, matA[i].matval, matC[i].matval, matB[i].matval, matG[i].matval, tempB[i], tempG[i]);
}
// #pragma omp prallel for
for (int i=0; i<nMat; i++){
// AddG = AddG + tempG :This is vector operation
matrix_add(matGN.nrow, matGN.ncol, AddG, tempG[i], 1.0);
// AddB = AddB + tempB :This is matrix operation
matrix_add(matAN.nrow, matAN.ncol, AddB, tempB[i], 1.0);
}
clock_t p1 = clock();
printf("Part1 Time taken: %.4fms\n", (double)(p1 - tstart)/(CLOCKS_PER_SEC*0.001));
matrix_add(matGN.nrow, matGN.ncol, matGN.matval, AddG, -1.0);
matrix_add(matAN.nrow, matAN.ncol, matAN.matval, AddB, -1.0);
matrix_invm(matAN.nrow, matAN.matval, matGN.matval, matXN.matval);
clock_t p2 = clock();
printf("Part2 Time taken: %.4fms\n", (double)(p2 - p1)/(CLOCKS_PER_SEC*0.001));
#pragma omp prallel for
for (int i=0; i<nMat; i++){
matrix_xi(m, n, matA[i].matval, matB[i].matval, matG[i].matval, matXN.matval, matX[i].matval);
// printf("%s\n", "-------------------------------------------------" );
// printf("%d th ",i);
// printf("%s\n", "Solution Xi Matrices");
// print_matrix(matX[i].nrow, matX[i].ncol, matX[i].matval);
}
// print_matrix(matXN.nrow, matXN.ncol, matXN.matval);
clock_t p3 = clock();
printf("Part3 Time taken: %.4fms\n", (double)(p3 - p2)/(CLOCKS_PER_SEC*0.001));
}
void solve_bbd_full (int N, int m, int n,
struct Matrix * matA, struct Matrix * matB,
struct Matrix * matC, struct Matrix * matG,
struct Matrix matAN, struct Matrix matGN){
int size = (N-1)*m+n;
double * A = (double*) malloc(size*size*sizeof(double));
double * AT = (double*) malloc(size*size*sizeof(double));
double * G = (double*) malloc(size*sizeof(double));
double * X = (double*) malloc(size*sizeof(double));
int i,j,k;
int nrhs = 1;
int lda = size;
int ldb = nrhs;
int * ipiv = (int*) malloc(size*sizeof(int));
int info;
for(i=0; i<size*size; i++){
A[i]=0;
}
// printf("Size is :%d\n", size );
for(i = 0; i<N-1; i++){
for(j=0; j<m; j++){
for(k=0; k<m; k++){
A[ (i*m+j)*size + (i*m)+k] = matA[i].matval[j*m+k];
}
}
for(j=0; j<n; j++){
for(k=0; k<m; k++){
A[ ((N-1)*m+j)*size+ (i*m)+k] = matC[i].matval[j*m+k];
}
}
for(j=0; j<m; j++){
for(k=0; k<n; k++){
A[(i*m+j)*size + (N-1)*m+k] = matB[i].matval[j*n+k];
}
}
for(j=0; j<m; j++){
G[i*m+j] = matG[i].matval[j];
}
}
for(j=0; j<n; j++){
for(k=0; k<n; k++){
A[((N-1)*m+j)*size + (N-1)*m+k] = matAN.matval[j*n+k];
}
}
for(j=0; j<n; j++){
G[(N-1)*m+j]= matGN.matval[j];
}
// printf("--------------------------------------------------------------------\n" );
// printf("Full matrix A: \n" );
// print_matrix(size, size, A);
// printf("Full matrix G: \n" );
// print_matrix(size, 1, G);
clock_t t1 = clock();
// dgesv_(&size, &one, AT, &size, pv, G, &size, &INFO);
info = LAPACKE_dgesv( LAPACK_ROW_MAJOR, size, nrhs, A, lda, ipiv, G, ldb);
clock_t t2 = clock();
printf("INFO VALUE: %d\n", info);
printf("Total Time taken for full Matrix: %.4fms\n", (double)(t2 - t1)/(CLOCKS_PER_SEC*0.001));
// printf("Print Xi solutions from full matrix \n");
// print_matrix(size, 1, G);
}