-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnested_search_saas.py
309 lines (275 loc) · 9.82 KB
/
nested_search_saas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# %% imports
# NOTE: `pip install pyro-ppl` to use FULLYBAYESIAN (SAASBO)
from time import time
from os.path import join
from pathlib import Path
import numpy as np
import pandas as pd
from matbench.bench import MatbenchBenchmark
import torch
from ax.storage.json_store.save import save_experiment
from ax import RangeParameter, ChoiceParameter, ParameterType, Data
from ax.core import (
SearchSpace,
Metric,
Experiment,
OptimizationConfig,
Objective,
)
from ax.storage.metric_registry import register_metric
from ax.core.parameter_constraint import SumConstraint, OrderConstraint
from ax.runners.synthetic import SyntheticRunner
from ax.modelbridge.registry import Models
import crabnet
from utils.matbench import get_test_results
from utils.parameterization import crabnet_mae
# %% setup
dummy = False
metric = "crabnet_mae"
if dummy:
n_splits = 2
n_sobol = 2
n_saas = 3
num_samples = 16
warmup_steps = 32
else:
n_splits = 5
# n_sobol = 2 * len(search_space.parameters)
n_sobol = 10
n_saas = max(100 - n_sobol, 0)
num_samples = 256
warmup_steps = 512
torch.manual_seed(12345) # To always get the same Sobol points
tkwargs = {
"dtype": torch.double,
"device": torch.device("cuda" if torch.cuda.is_available() else "cpu"),
}
# create dir https://stackoverflow.com/a/273227/13697228
parameter_str = join("saas", f"sobol_{n_sobol}-saas_{n_saas}")
experiment_dir = join("experiments", parameter_str)
figure_dir = join("figures", parameter_str)
if dummy:
experiment_dir = join(experiment_dir, "dummy")
figure_dir = join(figure_dir, "dummy")
Path(experiment_dir).mkdir(parents=True, exist_ok=True)
Path(figure_dir).mkdir(parents=True, exist_ok=True)
# %% constraint parameters and constraints
betas1 = RangeParameter(
name="betas1", parameter_type=ParameterType.FLOAT, lower=0.5, upper=0.9999
)
betas2 = RangeParameter(
name="betas2", parameter_type=ParameterType.FLOAT, lower=0.5, upper=0.9999
)
emb_scaler = RangeParameter(
name="emb_scaler", parameter_type=ParameterType.FLOAT, lower=0.0, upper=1.0
)
pos_scaler = RangeParameter(
name="pos_scaler", parameter_type=ParameterType.FLOAT, lower=0.0, upper=1.0
)
order_constraint = OrderConstraint(lower_parameter=betas1, upper_parameter=betas2)
sum_constraint = SumConstraint(
parameters=[emb_scaler, pos_scaler], is_upper_bound=True, bound=1.0
)
parameter_constraints = [order_constraint, sum_constraint]
# %% search space
search_space = SearchSpace(
parameters=[
RangeParameter(
name="batch_size", parameter_type=ParameterType.INT, lower=32, upper=256
),
RangeParameter(
name="fudge", parameter_type=ParameterType.FLOAT, lower=0.0, upper=0.1
),
RangeParameter(
name="d_model", parameter_type=ParameterType.INT, lower=100, upper=1024
),
RangeParameter(name="N", parameter_type=ParameterType.INT, lower=1, upper=10),
RangeParameter(
name="heads", parameter_type=ParameterType.INT, lower=1, upper=10
),
RangeParameter(
name="out_hidden4", parameter_type=ParameterType.INT, lower=32, upper=512
),
emb_scaler,
pos_scaler,
ChoiceParameter(
name="bias", parameter_type=ParameterType.BOOL, values=[False, True]
),
RangeParameter(
name="dim_feedforward",
parameter_type=ParameterType.INT,
lower=1024,
upper=4096,
),
RangeParameter(
name="dropout", parameter_type=ParameterType.FLOAT, lower=0.0, upper=1.0
),
ChoiceParameter(
name="elem_prop",
parameter_type=ParameterType.STRING,
values=["mat2vec", "magpie", "onehot"],
),
RangeParameter(
name="epochs_step", parameter_type=ParameterType.INT, lower=5, upper=20
),
RangeParameter(
name="pe_resolution",
parameter_type=ParameterType.INT,
lower=2500,
upper=10000,
),
RangeParameter(
name="ple_resolution",
parameter_type=ParameterType.INT,
lower=2500,
upper=10000,
),
ChoiceParameter(
name="criterion",
parameter_type=ParameterType.STRING,
values=["RobustL1", "RobustL2"],
),
RangeParameter(
name="lr", parameter_type=ParameterType.FLOAT, lower=0.0001, upper=0.006
),
betas1,
betas2,
RangeParameter(
name="eps",
parameter_type=ParameterType.FLOAT,
lower=0.0000001,
upper=0.0001,
),
RangeParameter(
name="weight_decay",
parameter_type=ParameterType.FLOAT,
lower=0.0,
upper=1.0,
),
RangeParameter(
name="alpha", parameter_type=ParameterType.FLOAT, lower=0.0, upper=1.0,
),
RangeParameter(name="k", parameter_type=ParameterType.INT, lower=2, upper=10),
],
parameter_constraints=parameter_constraints,
)
param_names = list(search_space.parameters.keys())
# %% CrabNetMetric
class CrabNetMetric(Metric):
def __init__(self, name, train_val_df):
self.train_val_df = train_val_df
super().__init__(name=name)
def fetch_trial_data(self, trial):
records = []
for arm_name, arm in trial.arms_by_name.items():
params = arm.parameters
# TODO: add timing info as optional parameter and as outcome metric
# TODO: maybe add interval score calculation as outcome metric
mean = crabnet_mae(params, train_val_df=train_val_df, n_splits=n_splits)
records.append(
{
"arm_name": arm_name,
"metric_name": self.name,
"trial_index": trial.index,
"mean": mean,
"sem": None,
}
)
return Data(df=pd.DataFrame.from_records(records))
register_metric(metric_cls=CrabNetMetric)
# %% matbench loop
mb = MatbenchBenchmark(autoload=False, subset=["matbench_expt_gap"])
task = list(mb.tasks)[0]
task.load()
maes = []
for i, fold in enumerate(task.folds):
t0 = time()
train_inputs, train_outputs = task.get_train_and_val_data(fold)
train_val_df = pd.DataFrame(
{"formula": train_inputs.values, "target": train_outputs.values}
)
if dummy:
train_val_df = train_val_df[:25]
optimization_config = OptimizationConfig(
objective=Objective(
metric=CrabNetMetric(name=metric, train_val_df=train_val_df), minimize=True,
),
)
# TODO: use status_quo (Arm) as default CrabNet parameters
exp = Experiment(
name="nested_crabnet_mae_saas",
search_space=search_space,
optimization_config=optimization_config,
runner=SyntheticRunner(),
)
sobol = Models.SOBOL(exp.search_space)
print("evaluating SOBOL points")
for _ in range(n_sobol):
print(_)
trial = exp.new_trial(generator_run=sobol.gen(1))
trial.run()
trial.mark_completed()
best_arm1 = None
data = exp.fetch_data()
j = -1
new_value = np.nan
best_so_far = np.nan
for j in range(n_saas):
saas = Models.FULLYBAYESIAN(
experiment=exp,
data=exp.fetch_data(),
num_samples=num_samples, # Increasing this may result in better model fits
warmup_steps=warmup_steps, # Increasing this may result in better model fits
gp_kernel="rbf", # "rbf" is the default in the paper, but we also support "matern"
torch_device=tkwargs["device"],
torch_dtype=tkwargs["dtype"],
verbose=False, # Set to True to print stats from MCMC
disable_progbar=True, # Set to False to print a progress bar from MCMC
)
generator_run = saas.gen(1)
best_arm, _ = generator_run.best_arm_predictions
trial = exp.new_trial(generator_run=generator_run)
trial.run()
trial.mark_completed()
data = Data.from_multiple_data([data, trial.fetch_data()])
new_value = trial.fetch_data().df["mean"].min()
best_so_far = data.df["mean"].min()
tf = time()
print(
f"fold{i}, BestInIter:{new_value:.3f}, BestSoFar:{best_so_far:.3f} elapsed time: {tf - t0}",
)
exp.fetch_data()
best_parameters = best_arm.parameters
experiment_fpath = join(experiment_dir, "experiment" + str(i) + ".json")
save_experiment(exp, experiment_fpath)
test_pred, default_mae, test_mae, best_parameterization = get_test_results(
task, fold, best_parameters, train_val_df
)
maes.append(test_mae) # [0.32241879861870626, ...]
task.record(fold, test_pred, params=best_parameterization)
print(maes)
print(np.mean(maes))
my_metadata = {"algorithm_version": crabnet.__version__}
mb.add_metadata(my_metadata)
mb.to_file(join(figure_dir, "expt_gap_benchmark.json.gz"))
1 + 1
# %% Code Graveyard
# min_importance = min(unfixed_importances.values())
# min_index = unfixed_importances.values().index(min_importance)
# least_important = unfixed_importances.keys[min_index]
# fixed_features = ObservationFeatures({"betas1": best_arm.parameters["betas1"]})
# for _ in range(n_gpei2):
# gpei2 = Models.GPEI(experiment=exp, data=exp.fetch_data())
# generator_run = gpei.gen(
# 1, search_space=search_space, fixed_features=fixed_features,
# )
# best_arm2, _ = generator_run.best_arm_predictions
# trial = exp.new_trial(generator_run=generator_run)
# trial.run()
# trial.mark_completed()
# unfixed_importances = [
# feature_importances.pop(fixed_name) for fixed_name in fixed_params.keys()
# ]
# table_view_plot(exp, exp.fetch_data())
# fig = plot_slice_plotly(gpei2, param_name="batch_size", metric_name="crabnet_mae")
# fig.show()