-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathfft.lua
889 lines (792 loc) · 26.9 KB
/
fft.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
local ffi = require 'ffi'
local fftw3 = require 'fftw3'
local complex = require 'signal.complex'
local xmath = require 'signal.extramath'
local signal = {}
local fftw = fftw3
local fftw_complex_cast = 'fftw_complex*'
local function typecheck(input)
if input:type() == 'torch.FloatTensor' then
fftw = fftw3.float
fftw_complex_cast = 'fftwf_complex*'
elseif input:type() == 'torch.DoubleTensor' then
fftw = fftw3
fftw_complex_cast = 'fftw_complex*'
else
dok.error('Unsupported precision of input tensor: ' .. input:type()
.. ' . Supported precision is Float/Double.')
end
end
local function fftGeneric(inp, direction)
typecheck(inp)
local input
if inp:dim() == 1 then -- assume that phase is 0
input = torch.Tensor(inp:size(1), 2):typeAs(inp):zero()
input[{{}, 1}] = inp
elseif inp:dim() == 2 and inp:size(2) == 2 then
input = inp
else
error('Input has to be 1D Tensor of size N (Real FFT with N points) or ' ..
'2D Tensor of size Nx2 (Complex FFT with N points)')
end
input = input:contiguous() -- make sure input is contiguous
local input_data = torch.data(input)
local input_data_cast = ffi.cast(fftw_complex_cast, input_data)
local output = torch.Tensor(input:size(1), 2):typeAs(input):zero();
local output_data = torch.data(output);
local output_data_cast = ffi.cast(fftw_complex_cast, output_data)
local flags = fftw.ESTIMATE
local plan = fftw.plan_dft_1d(input:size(1), input_data_cast, output_data_cast, direction, flags)
fftw.execute(plan)
fftw.destroy_plan(plan)
if direction == fftw.BACKWARD then
output = output:div(input:size(1)) -- normalize
end
return output
end
--[[
1D FFT
Takes Real inputs (1D tensor of N points)
or complex inputs 2D tensor of (Nx2) size for N points
Output matches with matlab output
]]--
function signal.fft(input)
return fftGeneric(input, fftw.FORWARD)
end
--[[
inverse 1D FFT
Takes Real inputs (1D tensor of N points)
or complex inputs 2D tensor of (Nx2) size for N points
Output matches with matlab output
]]--
function signal.ifft(input)
return fftGeneric(input, fftw.BACKWARD)
end
--[[
real to complex dft.
This function retains only the positive frequencies.
Input is a 1D real tensor
Output is 2D complex tensor of size (input:size(1)/2 + 1, 2)
]]--
function signal.rfft(input)
typecheck(input)
if input:dim() ~= 1 then error('Input has to be 1D Tensor of size N (Real FFT with N points)') end
input = input:contiguous() -- make sure input is contiguous
local input_data = torch.data(input)
local output = torch.Tensor(math.floor((input:size(1)/2) + 1), 2):typeAs(input):zero();
local output_data = torch.data(output);
local output_data_cast = ffi.cast(fftw_complex_cast, output_data)
local flags = fftw.ESTIMATE
local plan = fftw.plan_dft_r2c_1d(input:size(1), input_data, output_data_cast, flags)
fftw.execute(plan)
fftw.destroy_plan(plan)
return output
end
--[[
complex to real dft. This function is the exact inverse of signal.rfft
]]--
function signal.irfft(input, size)
typecheck(input)
if input:dim() ~= 2 or input:size(2) ~= 2 then
error('Input has to be 2D Tensor of size Nx2 (Complex input with N points)')
end
input = input:contiguous() -- make sure input is contiguous
local input_data = torch.data(input)
local input_data_cast = ffi.cast(fftw_complex_cast, input_data)
local size = size or (input:size(1) - 1) * 2
local output = torch.Tensor(size):typeAs(input):zero();
local output_data = torch.data(output);
local flags = fftw.ESTIMATE + fftw.PRESERVE_INPUT
local plan = fftw.plan_dft_c2r_1d(size, input_data_cast, output_data, flags)
fftw.execute(plan)
fftw.destroy_plan(plan)
output = output:div(size) -- normalize
return output
end
local function fft2Generic(inp, direction)
typecheck(inp)
local input
if inp:dim() == 2 then -- assume that phase is 0
input = torch.Tensor(inp:size(1), inp:size(2), 2):typeAs(inp):zero()
input[{{}, {}, 1}] = inp
elseif inp:dim() == 3 and inp:size(3) == 2 then
input = inp
else
error('Input has to be 2D Tensor of size MxN (Real 2D FFT with MxN points) or ' ..
'3D Tensor of size MxNx2 (Complex FFT with MxN points')
end
input = input:contiguous() -- make sure input is contiguous
local input_data = torch.data(input)
local input_data_cast = ffi.cast(fftw_complex_cast, input_data)
local output = torch.Tensor(input:size(1), input:size(2), 2):typeAs(input):zero();
local output_data = torch.data(output);
local output_data_cast = ffi.cast(fftw_complex_cast, output_data)
local flags = fftw.ESTIMATE
local plan = fftw.plan_dft_2d(input:size(1), input:size(2),
input_data_cast, output_data_cast, direction, flags)
fftw.execute(plan)
fftw.destroy_plan(plan)
if direction == fftw.BACKWARD then
output = output:div(input:size(1) * input:size(2)) -- normalize
end
return output
end
--[[
2D FFT
Takes Real inputs (2D tensor of NxM points)
or complex inputs 3D tensor of (NxMx2) size for NxM points
Output matches with matlab output
]]--
function signal.fft2(input)
return fft2Generic(input, fftw.FORWARD)
end
--[[
2D Inverse FFT
Takes Real inputs (2D tensor of NxM points)
or complex inputs 3D tensor of (NxMx2) size for NxM points
Output matches with matlab output
]]--
function signal.ifft2(input)
return fft2Generic(input, fftw.BACKWARD)
end
--[[
real to complex 2D dft.
This function retains only the positive frequencies.
Input is a 2D real tensor
Output is 3D complex tensor of size (input:size(1)/2 + 1, input:size(2)/2 + 1, 2)
]]--
function signal.rfft2(input)
typecheck(input)
if input:dim() ~= 2 then error('Input has to be 2D Tensor of size NxM (Real FFT with NxM points)') end
input = input:contiguous() -- make sure input is contiguous
local input_data = torch.data(input)
local output = torch.Tensor(input:size(1), math.floor((input:size(2)/2) + 1), 2):typeAs(input):zero();
local output_data = torch.data(output);
local output_data_cast = ffi.cast(fftw_complex_cast, output_data)
local flags = fftw.ESTIMATE
local plan = fftw.plan_dft_r2c_2d(input:size(1), input:size(2), input_data, output_data_cast, flags)
fftw.execute(plan)
fftw.destroy_plan(plan)
return output
end
--[[
2D complex to real dft. This function is the exact inverse of signal.rfft2
]]--
function signal.irfft2(input, size)
typecheck(input)
if input:dim() ~= 3 or input:size(3) ~= 2 then
error('Input has to be 3D Tensor of size NxMx2 (Complex input with NxM points)')
end
input = input:clone():contiguous() -- make sure input is contiguous and preserved
local input_data = torch.data(input)
local input_data_cast = ffi.cast(fftw_complex_cast, input_data)
local size = size or (input:size(2) - 1) * 2
local output = torch.Tensor(input:size(1), size):typeAs(input):zero();
local output_data = torch.data(output);
local flags = fftw.ESTIMATE
local plan = fftw.plan_dft_c2r_2d(input:size(1), size, input_data_cast, output_data, flags)
fftw.execute(plan)
fftw.destroy_plan(plan)
output = output:div(input:size(1) * size) -- normalize
return output
end
local function fft3Generic(inp, direction)
typecheck(inp)
local input
if inp:dim() == 3 then -- assume that phase is 0
input = torch.Tensor(inp:size(1), inp:size(2), inp:size(3), 2):typeAs(inp):zero()
input[{{}, {}, {}, 1}] = inp
elseif inp:dim() == 4 and inp:size(4) == 2 then
input = inp
else
error('Input has to be 3D Tensor of size MxNxP (Real 3D FFT with MxNxP points) or ' ..
'4D Tensor of size MxNxPx2 (Complex FFT with MxNxP points')
end
input = input:contiguous() -- make sure input is contiguous
local input_data = torch.data(input)
local input_data_cast = ffi.cast(fftw_complex_cast, input_data)
local output = torch.Tensor(input:size(1), input:size(2), input:size(3), 2):typeAs(input):zero();
local output_data = torch.data(output);
local output_data_cast = ffi.cast(fftw_complex_cast, output_data)
local flags = fftw.ESTIMATE
local plan = fftw.plan_dft_3d(input:size(1), input:size(2), input:size(3),
input_data_cast, output_data_cast, direction, flags)
fftw.execute(plan)
fftw.destroy_plan(plan)
if direction == fftw.BACKWARD then
output = output:div(input:size(1) * input:size(2) * input:size(3)) -- normalize
end
return output
end
--[[
3D FFT
Takes Real inputs (3D tensor of NxMxP points)
or complex inputs 4D tensor of (NxMxPx2) size for NxMxP points
Output matches with matlab output
]]--
function signal.fft3(input)
return fft3Generic(input, fftw.FORWARD)
end
--[[
3D Inverse FFT
Takes Real inputs (3D tensor of NxMxP points)
or complex inputs 4D tensor of (NxMxPx2) size for NxMxP points
Output matches with matlab output
]]--
function signal.ifft3(input)
return fft3Generic(input, fftw.BACKWARD)
end
local function fftMGeneric(inp, direction, rank)
typecheck(inp)
local input
if inp:dim() == 2 then -- assume that phase is 0
input = torch.Tensor(inp:size(1), inp:size(2), 2):typeAs(inp):zero()
input[{{}, {}, 1}] = inp
elseif inp:dim() == 3 and inp:size(3) == 2 then
input = inp
else
error('Input has to be 2D Tensor of size NxM (N real FFTs with M points) or ' ..
'3D Tensor of size NxMx2 (N complex FFTs with M points)')
end
input = input:contiguous() -- make sure input is contiguous
local input_data = torch.data(input)
local input_data_cast = ffi.cast(fftw_complex_cast, input_data)
local output = torch.Tensor(input:size(1), input:size(2), 2):typeAs(input):zero();
local output_data = torch.data(output);
local output_data_cast = ffi.cast(fftw_complex_cast, output_data)
local howmany = inp:size(1)
local stride = 1
local dist = inp:size(2)
local n = ffi.new("int[1]", inp:size(2))
local flags = fftw.ESTIMATE
local plan = fftw.plan_many_dft(
rank, n, howmany,
input_data_cast, nil, stride, dist,
output_data_cast, nil, stride, dist,
direction, flags)
fftw.execute(plan)
fftw.destroy_plan(plan)
if direction == fftw.BACKWARD then
output = output:div(input:size(2)) -- normalize
end
return output
end
function signal.fftM(input)
return fftMGeneric(input, fftw.FORWARD, 1)
end
function signal.ifftM(input)
return fftMGeneric(input, fftw.BACKWARD, 1)
end
function signal.rfftM(input)
typecheck(input)
if input:dim() ~= 2 then
error('Input has to be 2D tensor of size NxM (N real FFTs with M points).')
end
input = input:contiguous()
local input_data = torch.data(input)
local output = input.new(
input:size(1),
math.floor(1 + input:size(2) / 2),
2):zero()
local output_data = torch.data(output)
local output_data_cast = ffi.cast(fftw_complex_cast, output_data)
local rank = 1 -- computing 1d transforms
local n = ffi.new('int[1]', input:size(2))
local howmany = input:size(1)
local idist = 1
local odist = 1
local istride = input:size(2)
local ostride = output:size(2)
local flags = fftw.ESTIMATE
local plan = fftw.plan_many_dft_r2c(
1, n, input:size(1),
input_data, nil, 1, input:size(2),
output_data_cast, nil, 1, output:size(2),
flags)
fftw.execute(plan)
fftw.destroy_plan(plan)
return output
end
function signal.irfftM(input)
typecheck(input)
if input:dim() ~= 3 or input:size(3) ~= 2 then
error('Input has to be 3D Tensor of size Nx(2*(M-1))x2')
end
input = input:contiguous()
local input_data = torch.data(input)
local input_data_cast = ffi.cast(fftw_complex_cast, input_data)
local output = input.new(input:size(1), 2 * (input:size(2) - 1)):zero()
local output_data = torch.data(output)
local rank = 1
local n = ffi.new('int[1]', output:size(2))
local howmany = input:size(1)
local idist = 1
local odist = 1
local istride = input:size(2)
local ostride = output:size(2)
local flags = fftw.ESTIMATE + fftw.PRESERVE_INPUT
local plan = fftw.plan_many_dft_c2r(
rank, n, howmany,
input_data_cast, nil,
idist, istride,
output_data, nil,
odist, ostride,
flags)
fftw.execute(plan)
fftw.destroy_plan(plan)
output:div(output:size(2)) --normalize
return output
end
--[[
returns an L-point Hann window in a 1D tensor. L must be a positive integer.
When 'periodic' is specified, hann computes a length L+1 window and returns the first L points.
flag: 'periodic' or 'symmetric'. 'symmetric' is default
Output matches with matlab output
]]--
function signal.hann(L, flag)
if flag == 'periodic' then
L = L + 1
end
local N = L - 1
local out = torch.zeros(L)
local odata = torch.data(out)
for i=0,N do
odata[i] = 0.5 * (1-math.cos(2 * math.pi * i / N))
end
if flag == 'periodic' then
return out[{{1,L-1}}]
else
return out
end
end
--[[
returns an N-point Blackman window in a 1D tensor.
N must be a positive integer.
When 'periodic' is specified, computes a length N+1 window and returns the first N points.
flag: 'periodic' or 'symmetric'. 'symmetric' is default
Output matches with matlab output
]]--
function signal.blackman(N, flag)
if N == 1 then return torch.Tensor({1}); end
if flag == 'periodic' then
N = N + 1
end
local M, idx
if N % 2 == 1 then
M = (N+1)/2
idx = M-2
else
M = N/2
idx = M-1
end
local out = torch.zeros(N)
local odata = torch.data(out)
for i=0,M-1 do
odata[i] =
0.42
- 0.5 * math.cos(2*math.pi*i/(N-1))
+ 0.08 * math.cos(4*math.pi*i/(N-1))
end
for i=M,N-1 do
odata[i] = odata[idx]
idx = idx - 1
end
if flag == 'periodic' then
return out[{{1,N-1}}]
else
return out
end
end
--[[
returns an N-point minimum 4-term Blackman-Harris window in a 1D tensor.
The window is minimum in the sense that its maximum sidelobes are minimized.
N must be a positive integer.
flag: 'periodic' or 'symmetric'. 'symmetric' is default
Output matches with matlab output
]]--
function signal.blackmanharris(N, flag)
local a0 = 0.35875
local a1 = 0.48829
local a2 = 0.14128
local a3 = 0.01168
local out = torch.zeros(N)
local odata = torch.data(out)
local cos = math.cos
if flag == 'periodic' then
local c1 = 2 * math.pi / N
local c2 = 4 * math.pi / N
local c3 = 6 * math.pi / N
for i=0,N-1 do
odata[i] = a0 - a1*cos(c1*i) + a2*cos(c2*i) - a3*cos(c3*i)
end
else
local c1 = 2 * math.pi / (N-1)
local c2 = 4 * math.pi / (N-1)
local c3 = 6 * math.pi / (N-1)
for i=0,N-1 do
odata[i] = a0 - a1*cos(c1*i) + a2*cos(c2*i) - a3*cos(c3*i)
end
end
return out
end
local function apply_window(window, window_type)
window_type = window_type or 'rect'
local window_size = window:size(1)
local m = window_size - 1
window = window:contiguous()
local wdata = torch.data(window)
if window_type == 'hamming' then
for i=0,window_size-1 do
wdata[i] = wdata[i] * (.53836 - .46164 * math.cos(2 * math.pi * i / m));
end
elseif window_type == 'hann' then
for i=0,window_size-1 do
wdata[i] = wdata[i] * (.5 - .5 * math.cos(2 * math.pi * i / m));
end
elseif window_type == 'bartlett' then
for i=0,window_size-1 do
wdata[i] = wdata[i] * (2 / m * ((m/2) - math.abs(i - (m/2))));
end
end
return window
end
--[[
1D complex short-time fourier transforms
Run a window across your signal and calculate fourier transforms on that window.
To make sure that the windows are not discontinuous at the edges, you can optionally apply a window preprocessor.
The available window preprocessors are: hamming, hann, bartlett
]]--
function signal.stft(input, window_size, window_stride, window_type)
typecheck(input)
if input:dim() ~= 1 then error('Need 1D Tensor input') end
local length = input:size(1)
local nwindows = math.floor(((length - window_size)/window_stride) + 1);
local noutput = window_size
local output = torch.Tensor(nwindows, noutput, 2):typeAs(input):zero()
local window_index = 1
for i=1,length,window_stride do
if (i+window_size-1) > length then break; end
local window = input[{{i,i+window_size-1}}]:clone()
-- apply preprocessing
apply_window(window, window_type)
-- fft
local winout = signal.fft(window)
output[window_index] = winout
window_index = window_index + 1
end
return output
end
--[[
1D real short-time fourier transforms
Run a window across your signal and calculate fourier transforms on that window.
To make sure that the windows are not discontinuous at the edges, you can optionally apply a window preprocessor.
rfft is used for fourier transform, so only the positive frequencies are retained
The available window preprocessors are: hamming, hann, bartlett
]]--
function signal.rstft(input, window_size, window_stride, window_type)
typecheck(input)
if input:dim() ~= 1 then error('Need 1D Tensor input') end
local length = input:size(1)
local nwindows = math.floor(((length - window_size)/window_stride) + 1);
local noutput = math.floor(window_size/2 + 1);
local output = torch.Tensor(nwindows, noutput, 2):typeAs(input):zero()
local window_index = 1
for i=1,length,window_stride do
if (i+window_size-1) > length then break; end
local window = input[{{i,i+window_size-1}}]
-- apply preprocessing
apply_window(window, window_type)
-- fft
local winout = signal.rfft(window)
output[window_index] = winout
window_index = window_index + 1
end
return output
end
--[[
Takes the rstft(x) and generates a pretty spectrogram by
taking the magnitude of the stft, and applying a (natural log * 10)
Also transposes the output, to have time on the X axis.
]]--
function signal.spectrogram(inp, window_size, window_stride)
typecheck(inp)
-- calculate stft
local stftout = signal.rstft(inp, window_size, window_stride)
-- calculate magnitude of signal and convert to dB to make it look prettier
local stftout_r = stftout:select(3,1)
local stftout_c = stftout:select(3,2)
stftout_r:pow(2)
stftout_c:pow(2)
local stftout_magnitude = stftout_r + stftout_c
stftout_magnitude = stftout_magnitude + 0.01 -- adding constant to avoid log(0)
output = stftout_magnitude:log() * 10
return output:transpose(1,2)
end
--[[
Correct phase angles to produce smoother phase plots
Unwrap radian phases by adding multiples of 2*pi as appropriate to
remove jumps greater than **tol**. **tol** defaults to pi.
Output matches with matlab output
]]--
function signal.unwrap(a, tol)
if a:dim() ~= 1 then error('Input has to be 1D tensor') end
tol = tol or math.pi
tol = math.abs(tol)
local twopi = 2*math.pi;
local m = a:size(1)
a = a:clone()
-- Handle case where we only have one sample
if (m == 1) then return a end
a = a:contiguous()
local adata = torch.data(a)
for i=0,m-2 do
local val = adata[i+1] - adata[i]
if math.abs(val) > tol then
adata[i+1] = adata[i+1] - twopi * math.ceil((val - tol) / twopi)
end
end
return a
end
--[[
unwraps the phase and removes phase corresponding to integer lag.
Output matches with matlab output
]]--
function signal.rcunwrap(x)
if x:dim() ~= 1 then error('Input has to be 1D tensor') end
local n = x:size(1)
local nh = math.floor((n+1)/2); -- since n is positive, nh always rounds towards zero
local y = signal.unwrap(x):contiguous()
local ydata = torch.data(y)
local nd = xmath.round((y[nh+1]/math.pi))
if nd == 0 then return y,nd; end
for i=0,y:size(1)-1 do
ydata[i] = ydata[i] - (math.pi * nd * i / nh)
end
return y,nd
end
--[[
Adds phase corresponding to integer lag
Output matches with matlab output
]]--
function signal.rcwrap(y, nd)
if y:dim() ~= 1 then error('Input has to be 1D tensor') end
y = y:clone():contiguous()
nd = nd or 0
if nd == 0 then return y; end
local n = y:size(1)
local nh = math.floor((n+1)/2);
local ydata = torch.data(y)
for i=0,y:size(1)-1 do
ydata[i] = ydata[i] + (math.pi*nd*i/nh);
end
return y
end
--[[
1D Complex cepstral analysis
Returns the cepstrum and a phase shift factor "nd" that is useful to invert the signal back.
Output matches with matlab output
]]--
function signal.cceps(x)
typecheck(x)
--[[
logh = log(abs(h)) + sqrt(-1)*rcunwrap(complex.angle(h));
y = real(ifft(logh));
]]--
if not(x:dim() == 1 or (x:dim() == 2 and x:size(2) == 2)) then
error('Input has to be 1D tensor or Nx2 2D tensor')
end
local h = signal.fft(x);
local logh = h:clone();
logh[{{},1}] = torch.log(complex.abs(h))
local nd
logh[{{},2}],nd = signal.rcunwrap(complex.angle(h))
local y = signal.ifft(logh)
return y[{{},1}], nd -- real part
end
--[[
1D Inverse Complex cepstral analysis.
Takes in the outputs of cceps to produce the input signal back
Output matches with matlab output
]]--
function signal.icceps(xhat,nd)
typecheck(xhat)
if xhat:dim() ~= 1 then error('Input has to be 1D tensor') end
nd = nd or 0
local logh = signal.fft(xhat);
local h = logh:clone()
h[{{},1}] = complex.real(logh)
h[{{},2}] = signal.rcwrap(complex.imag(logh),nd)
local x = signal.ifft(complex.exp(h));
return complex.real(x)
end
--[[
Real cepstrum and minimum phase reconstruction
The real cepstrum is the inverse Fourier transform of the real logarithm of the magnitude of the Fourier transform of a sequence.
Output matches with matlab output
]]--
function signal.rceps(x)
typecheck(x)
if x:dim() ~= 1 then error('Input has to be 1D tensor') end
-- y=real(ifft(log(abs(fft(x)))));
return complex.real(signal.ifft(torch.log(complex.abs(signal.fft(x)))))
end
local function dctGeneric(input, direction)
typecheck(input)
if input:dim() ~= 1 then
error('Input has to be 1D Tensor of size N (Real FFT with N points)')
end
input = input:contiguous() -- make sure input is contiguous
local input_data = torch.data(input)
local output = torch.Tensor():typeAs(input):resizeAs(input):zero()
local output_data = torch.data(output)
local flags = fftw.ESTIMATE
local dcttype
if direction == fftw.FORWARD then
dcttype = fftw.r2r_kind(fftw.REDFT10)
else
dcttype = fftw.r2r_kind(fftw.REDFT01)
end
local plan = fftw.plan_r2r_1d(input:size(1), input_data, output_data, dcttype, flags)
fftw.execute(plan)
fftw.destroy_plan(plan)
if direction == fftw.BACKWARD then
output = output:div(2 * input:size(1)) -- normalize by 2n
end
return output
end
--[[
1D Discrete Cosine Transform (DCT)
Takes Real inputs (1D tensor of N points)
To see what is exactly computed, see section REDFT10 over here:
http://www.fftw.org/doc/1d-Real_002deven-DFTs-_0028DCTs_0029.html
]]--
function signal.dct(input)
return dctGeneric(input, fftw.FORWARD)
end
--[[
inverse 1D Discrete Cosine Transform (DCT)
Takes Real inputs (1D tensor of N points)
To see what is exactly computed, see section REDFT01 over here:
http://www.fftw.org/doc/1d-Real_002deven-DFTs-_0028DCTs_0029.html
]]--
function signal.idct(input)
return dctGeneric(input, fftw.BACKWARD)
end
local function dct2Generic(input, direction)
typecheck(input)
if input:dim() ~= 2 then
error('Input has to be 2D Tensor of size NxM (Real FFT with NxM points)')
end
input = input:contiguous() -- make sure input is contiguous
local input_data = torch.data(input)
local output = torch.Tensor():typeAs(input):resizeAs(input):zero()
local output_data = torch.data(output)
local flags = fftw.ESTIMATE
local dcttype
if direction == fftw.FORWARD then
dcttype = fftw.r2r_kind(fftw.REDFT10)
else
dcttype = fftw.r2r_kind(fftw.REDFT01)
end
local plan = fftw.plan_r2r_2d(input:size(1), input:size(2),
input_data, output_data, dcttype, dcttype, flags)
fftw.execute(plan)
fftw.destroy_plan(plan)
if direction == fftw.BACKWARD then
output = output:div(2 * input:size(1) * 2 * input:size(2)) -- normalize by 2n * 2m
end
return output
end
--[[
2D Discrete Cosine Transform (DCT)
Takes Real inputs (2D tensor of NxM points)
To see what is exactly computed, see section REDFT10 over here:
http://www.fftw.org/doc/1d-Real_002deven-DFTs-_0028DCTs_0029.html
]]--
function signal.dct2(input)
return dct2Generic(input, fftw.FORWARD)
end
--[[
inverse 2D Discrete Cosine Transform (DCT)
Takes Real inputs (2D tensor of NxM points)
To see what is exactly computed, see section REDFT01 over here:
http://www.fftw.org/doc/1d-Real_002deven-DFTs-_0028DCTs_0029.html
]]--
function signal.idct2(input)
return dct2Generic(input, fftw.BACKWARD)
end
local function dct3Generic(input, direction)
typecheck(input)
if input:dim() ~= 3 then
error('Input has to be 3D Tensor of size NxM (Real FFT with NxMxP points)')
end
input = input:contiguous() -- make sure input is contiguous
local input_data = torch.data(input)
local output = torch.Tensor():typeAs(input):resizeAs(input):zero()
local output_data = torch.data(output)
local flags = fftw.ESTIMATE
local dcttype
if direction == fftw.FORWARD then
dcttype = fftw.r2r_kind(fftw.REDFT10)
else
dcttype = fftw.r2r_kind(fftw.REDFT01)
end
local plan = fftw.plan_r2r_3d(input:size(1), input:size(2), input:size(3),
input_data, output_data,
dcttype, dcttype, dcttype, flags)
fftw.execute(plan)
fftw.destroy_plan(plan)
if direction == fftw.BACKWARD then
-- normalize by 2n * 2m * 2p
output = output:div(2 * input:size(1) * 2 * input:size(2) * 2 * input:size(3))
end
return output
end
--[[
3D Discrete Cosine Transform (DCT)
Takes Real inputs (3D tensor of NxMXP points)
To see what is exactly computed, see section REDFT10 over here:
http://www.fftw.org/doc/1d-Real_002deven-DFTs-_0028DCTs_0029.html
]]--
function signal.dct3(input)
return dct3Generic(input, fftw.FORWARD)
end
--[[
inverse 3D Discrete Cosine Transform (DCT)
Takes Real inputs (3D tensor of NxMxP points)
To see what is exactly computed, see section REDFT01 over here:
http://www.fftw.org/doc/1d-Real_002deven-DFTs-_0028DCTs_0029.html
]]--
function signal.idct3(input)
return dct3Generic(input, fftw.BACKWARD)
end
--[[
Discrete-time analytic signal using Hilbert transform
Takes 1D inputs
Output matches with matlab output
]]--
function signal.hilbert(xr)
typecheck(xr)
if xr:dim() ~= 1 then error('Input has to be 1D tensor') end
local x = signal.fft(xr)
local h = xr:clone():zero():contiguous()
local n = h:size(1)
local nby2 = math.floor(n/2)
local hd = torch.data(h)
if 2*nby2 == n then --even
hd[0] = 1 -- i=1
hd[nby2] = 1 -- i=(n/2)+1
for i=1,(nby2-1) do -- 2,3,...,(n/2)
hd[i] = 2
end
else -- odd
hd[0] = 1 -- i=1
for i=1,(nby2) do -- 2,3,...,((n+1)/2)
hd[i] = 2
end
end
x[{{},1}] = x[{{},1}]:cmul(h)
x[{{},2}] = x[{{},2}]:cmul(h)
return signal.ifft(x)
end
return signal