-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembed_biobert.py
114 lines (85 loc) · 3.5 KB
/
embed_biobert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
"""Precompute Biobert based word-embedding from papers"""
import json
import os
import pandas as pd
from dataset import get_keywords
import pickle
from tqdm import tqdm
import torch as tr
from transformers import BertTokenizer, AutoConfig, AutoModel
from flair.data import Sentence
import sys
import string
conf = json.load(open(sys.argv[1]))
conf.update(json.load(open(sys.argv[2])))
PUBLICATIONS_DIR = os.path.join(conf["base_dir"], "publications/")
LABELS_PATH = os.path.join(conf["base_dir"], "labels.csv")
if not os.path.isdir(conf["biobert_out_path"]):
os.mkdir(conf["biobert_out_path"])
labels = pd.read_csv(LABELS_PATH)
for f in os.listdir(conf['biobert_path']):
if ".txt" in f:
vocab = f
if ".index" in f:
index = f
if ".json" in f:
bconf = f
tokenizer = BertTokenizer(f"{conf['biobert_path']}{vocab}",
do_lower_case=False)
conf_file = f"{conf['biobert_path']}{bconf}"
bert_config = AutoConfig.from_pretrained(conf_file)
emb_size = bert_config.hidden_size
emb_max_len = bert_config.max_position_embeddings
fname = f"{conf['biobert_path']}{index}"
biobert = AutoModel.from_pretrained(fname, from_tf=True,
config=bert_config)
biobert.to(conf["device"])
biobert.eval()
for param in biobert.parameters():
param.requires_grad = False
MAX_LEN = 10000
device = conf["device"]
labels = pd.read_csv(LABELS_PATH)
interactions = labels["interaction"].unique().tolist()
embeddings = {}
for npmid, pmid in enumerate(tqdm(labels["PMID"].unique())):
if f"{pmid}.pk" in os.listdir(f"{conf['biobert_out_path']}"):
print(pmid, 'ok')
continue
with open(f"{PUBLICATIONS_DIR}{pmid}.txt", encoding="utf8") as fin:
text = fin.read()
embedding = tr.zeros((MAX_LEN, emb_size)).to("cpu")
# Tokenize the same way as other embeddings to track entities and use the same classifier model. Internally, the BERT tokenizer is used.
tokens = text.translate(str.maketrans("", "", string.punctuation)).lower().split()
tokens = Sentence([t for t in tokens if len(t)>2])
tsize = len(tokens)
tokens.tokens = tokens.tokens[:MAX_LEN]
keywords = get_keywords(tokens)
# Takes the context of each word, compute biobert embedding, join tokens (word tokenization) and save the word embedding.
WORD_TOKEN_WIN = 200
win_list, win_start = [], []
for k, w in enumerate(tokens):
start = max(k - WORD_TOKEN_WIN // 2, 0)
end = k + WORD_TOKEN_WIN // 2
win_list.append(' '.join([w.text for w in tokens[start: end]]))
win_start.append(start)
tokens = tokenizer(win_list,
add_special_tokens=False,
return_tensors="pt", truncation=True,
max_length=emb_max_len, padding=True)
batch = 0
batch_size = 64
while batch*batch_size < len(win_list):
start = batch*batch_size
end = min((batch+1)*batch_size, len(win_list))
ind = slice(start, end)
with tr.no_grad():
out = biobert(
input_ids=tokens["input_ids"][ind].to(device),
attention_mask=tokens["attention_mask"][ind].to(device),
token_type_ids=tokens["token_type_ids"][ind].to(device))
tr.cuda.empty_cache()
embedding[ind, :] = out["pooler_output"].detach().to("cpu")
batch += 1
pickle.dump([embedding, keywords], open(
f"{conf['biobert_out_path']}{pmid}.pk", "wb"))