forked from brain-research/nngp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterp.py
110 lines (85 loc) · 3.34 KB
/
interp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Interpolate in NNGP grid.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
def interp_lin(x, y, xp, log_spacing=False):
"""Linearly interpolate.
x is evenly spaced grid coordinates, with values y,
xp are the locations to which to interpolate.
x and xp must be 1d tensors.
"""
with tf.name_scope('interp_lin'):
if log_spacing:
x = tf.log(x)
xp = tf.log(xp)
spacing = x[1] - x[0]
grid = (xp - x[0]) / spacing
ind1 = tf.cast(grid, tf.int32)
ind2 = ind1 + 1
max_ind = x.shape[0].value
# set top and bottom indices identical if extending past end of range
ind2 = tf.minimum(max_ind - 1, ind2)
weight1 = tf.abs(xp - tf.gather(x, ind1)) / spacing
weight2 = tf.abs(xp - tf.gather(x, ind2)) / spacing
if log_spacing:
weight1 = tf.exp(weight1)
weight2 = tf.exp(weight2)
weight1 = 1. - tf.reshape(weight1, [-1] + [1] * (len(y.shape) - 1))
weight2 = 1. - tf.reshape(weight2, [-1] + [1] * (len(y.shape) - 1))
weight_sum = weight1 + weight2
weight1 /= weight_sum
weight2 /= weight_sum
y1 = tf.gather(y, ind1)
y2 = tf.gather(y, ind2)
yp = y1 * weight1 + y2 * weight2
return yp
def _get_interp_idxs_weights_2d(x, xp, y, yp, x_log_spacing=False):
with tf.name_scope('get_interp_idxs_weights_2d'):
if x_log_spacing:
x = tf.log(x)
xp = tf.log(xp)
with tf.control_dependencies([yp]):
xp = tf.tile(xp, yp.shape)
xyp = tf.expand_dims(tf.parallel_stack([xp, yp]), 1)
xy0 = tf.reshape(tf.parallel_stack([x[0], y[0]]), [2, 1, 1])
xy1 = tf.reshape(tf.parallel_stack([x[1], y[1]]), [2, 1, 1])
spacing = xy1 - xy0
ind_grid = (xyp - xy0) / spacing
ind = tf.cast(ind_grid, tf.int32) + [[[0], [1]]]
max_ind = [[[x.shape[0].value - 1]], [[y.shape[0].value - 1]]]
ind = tf.minimum(ind, max_ind)
ind_float = tf.cast(ind, tf.float64)
xy_grid = ind_float * spacing + xy0
weight = tf.abs(xyp - xy_grid) / spacing
if x_log_spacing:
weight = tf.parallel_stack([tf.exp(weight[0]), weight[1]])
weight = 1. - weight
weight_sum = tf.reduce_sum(weight, axis=1, keep_dims=True)
weight /= weight_sum
return ind, weight
def interp_lin_2d(x, y, z, xp, yp, x_log_spacing=False):
with tf.name_scope('interp_lin_2d'):
ind, weight = _get_interp_idxs_weights_2d(x, xp, y, yp, x_log_spacing)
zp_accum = 0.
for ind_x, weight_x in [(ind[0, 0], weight[0, 0]),
(ind[0, 1], weight[0, 1])]:
for ind_y, weight_y in [(ind[1, 0], weight[1, 0]),
(ind[1, 1], weight[1, 1])]:
zp = tf.gather_nd(z, tf.stack([ind_x, ind_y], axis=1))
zp_accum += zp * weight_x * weight_y
return zp_accum