-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSTICI_V1.1.py
1415 lines (1222 loc) · 66.1 KB
/
STICI_V1.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Copyright (C) 2024 Mohammad Erfan Mowlaei
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Author email: erfan.molaei@gmail.com
"""
'''
Sample calls:
python3 STICI_V1.1.py --mode train --which-chunk 1 --save-dir ./alaki --ref ./data/STI_benchmark_datasets/ALL.chr22.training.samples.100k.any.type.0.01.maf.variants.vcf.gz --min-mr 0.85 --max-mr 0.95 --cs 2048 --sites-per-model 10240 --co 64 --na-heads 16 --embed-dim 128 --batch-size-per-gpu 4 --tihp 1 --lr 0.002 --restart-training 1 --verbose 1
python3 STICI_V1.1.py --save-dir ./alaki --ref ./data/test_purpose_datasets/Chr22_Dels_train_fold_1.vcf --min-mr 0.8 --max-mr 0.8 --na-heads 16 --embed-dim 128 --batch-size-per-gpu 4 --tihp 1 --verbose 1 --cs 2048 --co 64 --sites-per-model 10240 --lr 0.002 --restart-training 1
python3 STICI_V1.1.py --save-dir ./alaki --ref ./data/test_purpose_datasets/Chr22_SVs_train_fold_1.vcf --min-mr 0.8 --max-mr 0.8 --na-heads 16 --embed-dim 128 --batch-size-per-gpu 4 --tihp 1 --verbose 1 --cs 2048 --co 64 --sites-per-model 10240 --lr 0.002 --restart-training 1
'''
import argparse
import datatable as dt
import gzip
import json
import logging
import math
import numpy as np
import os
import pandas as pd
import psutil
import shutil
import sys
import tensorflow as tf
import tensorflow.keras.backend as K
import tensorflow_addons as tfa
from joblib import Parallel, delayed
from sklearn import metrics
from sklearn.model_selection import train_test_split
from tensorflow import keras
from tensorflow.keras import constraints
from tensorflow.keras import initializers
from tensorflow.keras import layers
from tensorflow.keras import regularizers
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import tag_constants
# from icecream import ic
from tqdm import tqdm
from typing import Union
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKCYAN = '\033[96m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
def pprint(text):
print(f"{bcolors.OKGREEN}{text}{bcolors.ENDC}")
# logging.basicConfig(level=logging.WARNING)
pprint("Tensorflow version " + tf.__version__)
SUPPORTED_FILE_FORMATS = {"vcf", "csv", "tsv"}
keras.saving.get_custom_objects().clear()
@keras.saving.register_keras_serializable(package="MyLayers")
class TransformerBlock(layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, method='linear',
dropout_rate=0.0, start_offset=0, end_offset=0):
super(TransformerBlock, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.method = method
self.start_offset = start_offset
self.end_offset = end_offset
self.ffn = keras.Sequential(
[layers.Dense(ff_dim, activation=tf.nn.gelu),
layers.Dense(embed_dim, activation=tf.nn.gelu), ]
)
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.att = layers.MultiHeadAttention(num_heads=self.num_heads,
key_dim=self.embed_dim,
dropout=dropout_rate)
def get_config(self):
config = super().get_config()
config.update(
{
"embed_dim": self.embed_dim,
"num_heads": self.num_heads,
"method": self.method,
"start_offset": self.start_offset,
"end_offset": self.end_offset,
"ffn": self.ffn,
"att": self.att,
"layernorm1": self.layernorm1,
"layernorm2": self.layernorm2,
}
)
return config
def call(self, x, training=False):
attn_output = self.att(x[0][:, self.start_offset:x[0].shape[1] - self.end_offset, :], x[1], training=training)
out1 = self.layernorm1(x[0][:, self.start_offset:x[0].shape[1] - self.end_offset, :] + attn_output)
ffn_output = self.ffn(out1)
return self.layernorm2(out1 + ffn_output)
@keras.saving.register_keras_serializable(package="MyLayers")
class CrossAttentionLayer(layers.Layer):
def __init__(self, local_dim, global_dim,
start_offset=0, end_offset=0,
activation=tf.nn.gelu, dropout_rate=0.0,
n_heads=8, **kwargs):
super(CrossAttentionLayer, self).__init__(**kwargs)
self.local_dim = local_dim
self.global_dim = global_dim
self.dropout_rate = dropout_rate
self.activation = activation
self.start_offset = start_offset
self.end_offset = end_offset
self.n_heads = n_heads
self.layer_norm00 = layers.LayerNormalization()
self.layer_norm01 = layers.LayerNormalization()
self.layer_norm1 = layers.LayerNormalization()
self.ffn = tf.keras.Sequential(
[
layers.Dense(self.local_dim // 2, activation=self.activation,
),
layers.Dense(self.local_dim,
activation=self.activation,
), ]
)
self.add0 = layers.Add()
self.add1 = layers.Add()
self.attention = layers.MultiHeadAttention(num_heads=self.n_heads,
key_dim=self.local_dim)
def get_config(self):
config = super().get_config()
config.update(
{
"local_dim": self.local_dim,
"global_dim": self.global_dim,
"start_offset": self.start_offset,
"end_offset": self.end_offset,
"activation": self.activation,
"dropout_rate": self.dropout_rate,
"n_heads": self.n_heads,
"layer_norm00": self.layer_norm00,
"layer_norm01": self.layer_norm01,
"layer_norm1": self.layer_norm1,
"ffn": self.ffn,
"add0": self.add0,
"add1": self.add1,
"attention": self.attention,
}
)
return config
def call(self, inputs, training=False):
local_repr = self.layer_norm00(inputs[0])
global_repr = self.layer_norm01(inputs[1])
query = local_repr[:, self.start_offset:local_repr.shape[1] - self.end_offset, :]
key = global_repr
value = global_repr
# Generate cross-attention outputs: [batch_size, latent_dim, projection_dim].
attention_output = self.attention(
query, key, value, training=training
)
# Skip connection 1.
attention_output = self.add0([attention_output, query])
# Apply layer norm.
attention_output = self.layer_norm1(attention_output)
# Apply Feedforward network.
outputs = self.ffn(attention_output)
# Skip connection 2.
outputs = self.add1([outputs, attention_output])
return outputs
@keras.saving.register_keras_serializable(package="MyLayers")
class CatEmbeddings(layers.Layer):
def __init__(self, embedding_dim,
embeddings_initializer='glorot_uniform',
embeddings_regularizer=None,
activity_regularizer=None,
embeddings_constraint=None, **kwargs):
super(CatEmbeddings, self).__init__(**kwargs)
self.embedding_dim = embedding_dim
self.embeddings_initializer = initializers.get(embeddings_initializer)
self.embeddings_regularizer = regularizers.get(embeddings_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.embeddings_constraint = constraints.get(embeddings_constraint)
def build(self, input_shape):
self.num_of_allels = input_shape[-1]
self.n_snps = input_shape[-2]
self.position_embedding = layers.Embedding(
input_dim=self.n_snps, output_dim=self.embedding_dim
)
self.embedding = self.add_weight(
shape=(self.num_of_allels, self.embedding_dim),
initializer=self.embeddings_initializer,
trainable=True, name='cat_embeddings',
regularizer=self.embeddings_regularizer,
constraint=self.embeddings_constraint,
experimental_autocast=False
)
self.positions = tf.range(start=0, limit=self.n_snps, delta=1)
def get_config(self):
config = super().get_config()
config.update(
{
"embedding_dim": self.embedding_dim,
"embeddings_initializer": self.embeddings_initializer,
"embeddings_regularizer": self.embeddings_regularizer,
"activity_regularizer": self.activity_regularizer,
"embeddings_constraint": self.embeddings_constraint,
"position_embedding": self.position_embedding,
"embeddings_constraint": self.embeddings_constraint,
"num_of_allels": self.num_of_allels,
"n_snps": self.n_snps,
"embedding": self.embedding.numpy(),
"positions": self.positions.numpy(),
}
)
return config
def call(self, inputs):
self.immediate_result = tf.einsum('ijk,kl->ijl', inputs, self.embedding)
return self.immediate_result + self.position_embedding(self.positions)
@keras.saving.register_keras_serializable(package="MyLayers")
class ConvBlock(layers.Layer):
def __init__(self, embed_dim, **kwargs):
super(ConvBlock, self).__init__(**kwargs)
self.embed_dim = embed_dim
self.const = None
self.conv000 = layers.Conv1D(embed_dim, 3, padding='same', activation=tf.nn.gelu,
)
self.conv010 = layers.Conv1D(embed_dim, 5, padding='same', activation=tf.nn.gelu,
)
self.conv011 = layers.Conv1D(embed_dim, 7, padding='same', activation=tf.nn.gelu,
)
self.conv020 = layers.Conv1D(embed_dim, 7, padding='same', activation=tf.nn.gelu,
)
self.conv021 = layers.Conv1D(embed_dim, 15, padding='same', activation=tf.nn.gelu,
)
self.add = layers.Add()
self.conv100 = layers.Conv1D(embed_dim, 3, padding='same',
activation=tf.nn.gelu,
kernel_constraint=self.const, )
self.bn0 = layers.BatchNormalization()
self.bn1 = layers.BatchNormalization()
self.dw_conv = layers.Conv1D(embed_dim, 1, padding='same')
self.activation = layers.Activation(tf.nn.gelu)
def get_config(self):
config = super().get_config()
config.update(
{
"embed_dim": self.embed_dim,
"const": self.const,
"conv000": self.conv000,
"conv010": self.conv010,
"conv011": self.conv011,
"conv020": self.conv020,
"conv021": self.conv021,
"add": self.add,
"conv100": self.conv100,
"bn0": self.bn0,
"bn1": self.bn1,
"dw_conv": self.dw_conv,
"activation": self.activation,
}
)
return config
def call(self, inputs):
xa = self.conv000(inputs)
xb = self.conv010(xa)
xb = self.conv011(xb)
xc = self.conv020(xa)
xc = self.conv021(xc)
xa = self.add([xb, xc])
xa = self.conv100(xa)
xa = self.bn0(xa)
xa = self.dw_conv(xa)
xa = self.bn1(xa)
xa = self.activation(xa)
return xa
@keras.saving.register_keras_serializable(package="MyLayers", name="chunk_module")
def chunk_module(input_len, embed_dim, num_heads,
start_offset=0, end_offset=0, dropout_rate=0.25):
projection_dim = embed_dim
inputs = layers.Input(shape=(input_len, embed_dim))
xa = inputs
xa0 = TransformerBlock(projection_dim, num_heads, projection_dim // 2,
start_offset=start_offset, end_offset=end_offset, dropout_rate=0.0)([xa, xa])
xa = ConvBlock(projection_dim)(xa0)
xa_skip = ConvBlock(projection_dim)(xa)
xa = layers.Dense(projection_dim, activation=tf.nn.gelu)(xa)
xa = ConvBlock(projection_dim)(xa)
xa = CrossAttentionLayer(projection_dim, projection_dim, dropout_rate=0.0)([xa, xa0])
xa = layers.Dropout(dropout_rate)(xa)
xa = ConvBlock(projection_dim)(xa)
xa = layers.Concatenate(axis=-1)([xa_skip, xa])
model = keras.Model(inputs=inputs, outputs=xa)
return model
## STICI Model
@keras.saving.register_keras_serializable(package="MyModels")
class STICI(keras.Model):
def __init__(self,
embed_dim,
num_heads,
offset_before=0,
offset_after=0,
chunk_size=2048,
activation=tf.nn.gelu,
dropout_rate=0.25,
attention_range=64,
**kwargs):
super(STICI, self).__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.chunk_size = chunk_size
self.activation = activation
self.dropout_rate = dropout_rate
self.attention_range = attention_range
self.offset_before = offset_before
self.offset_after = offset_after
def build(self, input_shape):
self.seq_len = input_shape[1]
self.in_channel = input_shape[-1]
self.chunk_starts = list(range(0, input_shape[1], self.chunk_size))
self.chunk_ends = []
for cs in self.chunk_starts:
self.chunk_ends.append(min(cs + self.chunk_size, input_shape[1]))
self.mask_starts = [max(0, cs - self.attention_range) for cs in self.chunk_starts]
self.mask_ends = [min(ce + self.attention_range, input_shape[1]) for ce in self.chunk_ends]
self.chunkers = [chunk_module(self.mask_ends[i] - self.mask_starts[i],
self.embed_dim, self.num_heads,
start_offset=cs - self.mask_starts[i],
end_offset=self.mask_ends[i] - self.chunk_ends[i],
dropout_rate=self.dropout_rate) for i, cs in enumerate(self.chunk_starts)]
self.concat_layer = layers.Concatenate(axis=-2)
self.embedding = CatEmbeddings(self.embed_dim)
self.after_concat_layer = layers.Conv1D(self.embed_dim // 2, 5, padding='same', activation=tf.nn.gelu)
self.last_conv = layers.Conv1D(self.in_channel - 1, 5, padding='same', activation=tf.nn.softmax)
super(STICI, self).build(input_shape)
def get_config(self):
config = super().get_config()
config.update(
{
"embed_dim": self.embed_dim,
"num_heads": self.num_heads,
"offset_before": self.offset_before,
"offset_after": self.offset_after,
"chunk_size": self.chunk_size,
"activation": self.activation,
"dropout_rate": self.dropout_rate,
"attention_range": self.attention_range,
"in_channel": self.in_channel,
"seq_len": self.seq_len,
"chunk_starts": self.chunk_starts,
"chunk_ends": self.chunk_ends,
"mask_starts": self.mask_starts,
"mask_ends": self.mask_ends,
"chunkers": self.chunkers,
"concat_layer": self.concat_layer,
"embedding": self.embedding,
"after_concat_layer": self.after_concat_layer,
"last_conv": self.last_conv,
}
)
return config
def call(self, inputs, training=False):
x = self.embedding(inputs)
chunks = [self.chunkers[i](x[:,
self.mask_starts[i]:self.mask_ends[i]], training=training) for i, chunker \
in enumerate(self.chunkers)]
x = self.concat_layer(chunks)
x = self.after_concat_layer(x)
x = self.last_conv(x)
x = x[:, self.offset_before:self.seq_len - self.offset_after]
return x
custom_objects = {"STICI": STICI,
"chunk_module": chunk_module,
"ConvBlock": ConvBlock,
"GenoEmbeddings": CatEmbeddings,
"TransformerBlock": TransformerBlock,
"CrossAttentionLayer": CrossAttentionLayer}
## Loss
import tensorflow as tf
class ImputationLoss(tf.keras.losses.Loss):
def __init__(self, use_r2_loss=True, **kwargs):
super(ImputationLoss, self).__init__(**kwargs)
self.ce_loss_obj = tf.keras.losses.CategoricalCrossentropy(reduction=tf.keras.losses.Reduction.SUM)
self.kld_loss_obj = tf.keras.losses.KLDivergence(reduction=tf.keras.losses.Reduction.SUM)
self.use_r2_loss = use_r2_loss
def calculate_Minimac_R2(self, pred_alt_allele_probs, gt_alt_af):
mask = tf.logical_or(tf.equal(gt_alt_af, 0.0), tf.equal(gt_alt_af, 1.0))
gt_alt_af = tf.where(mask, 0.5, gt_alt_af)
denom = gt_alt_af * (1.0 - gt_alt_af)
denom = tf.where(denom < 0.01, 0.01, denom)
r2 = tf.reduce_mean(tf.square(pred_alt_allele_probs - gt_alt_af), axis=0) / denom
r2 = tf.where(mask, tf.zeros_like(r2), r2)
return r2
def call(self, y_true, y_pred):
y_true = tf.cast(y_true, y_pred.dtype)
cat_loss = self.ce_loss_obj(y_true, y_pred)
kl_loss = self.kld_loss_obj(y_true, y_pred)
total_loss = cat_loss + kl_loss
if self.use_r2_loss:
batch_size = tf.shape(y_true)[0]
group_size = 4
num_full_groups = batch_size // group_size
num_remainder_samples = batch_size % group_size
y_true_grouped = tf.reshape(y_true[:num_full_groups * group_size], (num_full_groups, group_size) + tuple(y_true.shape[1:]))
y_pred_grouped = tf.reshape(y_pred[:num_full_groups * group_size], (num_full_groups, group_size) + tuple(y_pred.shape[1:]))
r2_loss = 0.0
for i in range(num_full_groups):
gt_alt_af = tf.cast(tf.math.count_nonzero(tf.argmax(y_true_grouped[i], axis=-1), axis=0), tf.int32) / group_size
gt_alt_af = tf.cast(gt_alt_af, tf.float32)
pred_alt_allele_probs = tf.reduce_sum(y_pred_grouped[i][:, :, 1:], axis=-1)
r2_loss += -tf.reduce_sum(self.calculate_Minimac_R2(pred_alt_allele_probs, gt_alt_af)) * tf.cast(group_size, tf.float32)
if num_remainder_samples > 0:
remainder_start_index = num_full_groups * group_size
y_true_remainder = y_true[remainder_start_index:]
y_pred_remainder = y_pred[remainder_start_index:]
gt_alt_af = tf.cast(tf.math.count_nonzero(tf.argmax(y_true_remainder, axis=-1), axis=0), tf.int32) / num_remainder_samples
gt_alt_af = tf.cast(gt_alt_af, tf.float32)
pred_alt_allele_probs = tf.reduce_sum(y_pred_remainder[:, :, 1:], axis=-1)
r2_loss += -tf.reduce_sum(self.calculate_Minimac_R2(pred_alt_allele_probs, gt_alt_af)) * tf.cast(num_remainder_samples, tf.float32)
total_loss += r2_loss
return total_loss
## Model creation
def create_model(args):
model = STICI(embed_dim=args["embedding_dim"],
num_heads=args["num_heads"],
chunk_size=args["chunk_size"],
activation=tf.nn.gelu,
attention_range=args["chunk_overlap"],
offset_before=args["offset_before"],
offset_after=args["offset_after"])
optimizer = tfa.optimizers.LAMB(learning_rate=args["lr"])
# optimizer = tf.optimizers.AdamW(learning_rate=args["lr"], weight_decay=1e-5)
model.compile(optimizer, loss=ImputationLoss(use_r2_loss=args["use_r2"]),
metrics=tf.keras.metrics.CategoricalAccuracy())
return model
def create_callbacks(metric="loss", save_path="."):
reducelr = tf.keras.callbacks.ReduceLROnPlateau(
monitor=metric,
mode='auto',
factor=0.5,
patience=3,
min_lr=1e-7,
verbose=0
)
earlystop = tf.keras.callbacks.EarlyStopping(
monitor=f"val_{metric}",
mode='auto',
patience=35,
verbose=1,
restore_best_weights=True
)
checkpoint = tf.keras.callbacks.ModelCheckpoint(
save_path,
monitor=metric,
verbose=0,
save_best_only=True,
save_weights_only=False,
mode='auto',
save_freq='epoch',
)
callbacks = [
reducelr,
earlystop,
# checkpoint
]
return callbacks
class DataReader:
"""
If the reference is unphased, cannot handle phased target data, so the valid (ref, target) combinations are:
(phased, phased), (phased, unphased), (unphased, unphased)
If the reference is haps, the target cannot be unphased (can we merge every two haps to form unphased diploids?)
Important note: for each case, the model should be trained separately
"""
def __init__(self, ):
self.target_is_gonna_be_phased = None
self.target_set = None
self.target_sample_value_index = 2
self.ref_sample_value_index = 2
self.target_file_extension = None
self.allele_count = 2
self.genotype_vals = None
self.ref_is_phased = None
self.reference_panel = None
self.VARIANT_COUNT = 0
self.is_phased = False
self.MISSING_VALUE = None
self.ref_is_hap = False
self.target_is_hap = False
self.ref_n_header_lines = []
self.ref_n_data_header = ""
self.target_n_header_lines = []
self.target_n_data_header = ""
self.ref_separator = None
self.map_values_1_vec = np.vectorize(self.__map_hap_2_ind_parent_1)
self.map_values_2_vec = np.vectorize(self.__map_hap_2_ind_parent_2)
self.map_haps_to_vec = np.vectorize(self.__map_haps_2_ind)
self.delimiter_dictionary = {"vcf": "\t", "csv": ",", "tsv": "\t", "infer": "\t"}
self.ref_file_extension = "vcf"
self.test_file_extension = "vcf"
self.target_is_phased = True
## Idea: keep track of possible alleles in each variant, and filter the predictions based on that
def __read_csv(self, file_path, is_vcf=False, is_reference=False, separator="\t", first_column_is_index=True,
comments="##") -> pd.DataFrame:
"""
In this form the data should not have more than a column for ids. The first column can be either sample ids or variant ids. In case of latter, make sure to pass :param variants_as_columns=True. Example of sample input file:
## Comment line 0
## Comment line 1
Sample_id 17392_chrI_17400_T_G ....
HG1023 1
HG1024 0
"""
pprint("Reading the file...")
data_header = None
path_sep = "/" if "/" in file_path else os.path.sep
line_counter = 0
root, ext = os.path.splitext(file_path)
with gzip.open(file_path, 'rt') if ext == '.gz' else open(file_path, 'rt') as f_in:
# skip info
while True:
line = f_in.readline()
if line.startswith(comments):
line_counter += 1
if is_reference:
self.ref_n_header_lines.append(line)
else:
self.target_n_header_lines.append(line)
else:
data_header = line
break
if data_header is None:
raise IOError("The file only contains comments!")
df = dt.fread(file=file_path,
sep=separator, header=True, skip_to_line=line_counter + 1)
df = df.to_pandas() # .astype('category')
if first_column_is_index:
df.set_index(df.columns[0], inplace=True)
return df
def __find_file_extension(self, file_path, file_format, delimiter):
# Default assumption
separator = "\t"
found_file_format = None
if file_format not in ["infer"] + list(SUPPORTED_FILE_FORMATS):
raise ValueError("File extension must be one of {'vcf', 'csv', 'tsv', 'infer'}.")
if file_format == 'infer':
file_name_tokenized = file_path.split(".")
for possible_extension in file_name_tokenized[::-1]:
if possible_extension in SUPPORTED_FILE_FORMATS:
found_file_format = possible_extension
separator = self.delimiter_dictionary[possible_extension] if delimiter is None else delimiter
break
if found_file_format is None:
logging.warning("Could not infer the file type. Using tsv as the last resort.")
found_file_format = "tsv"
else:
found_file_format = file_format
separator = self.delimiter_dictionary[file_format] if delimiter is None else delimiter
return found_file_format, separator
def assign_training_set(self, file_path: str,
target_is_gonna_be_phased_or_haps: bool,
variants_as_columns: bool = False,
delimiter=None,
file_format="infer",
first_column_is_index=True,
comments="##") -> None:
"""
:param file_path: reference panel or the training file path. Currently, VCF, CSV, and TSV are supported
:param target_is_gonna_be_phased: Indicates whether the targets for the imputation will be phased or unphased.
:param variants_as_columns: Whether the columns are variants and rows are samples or vice versa.
:param delimiter: the seperator used for the file
:param file_format: one of {"vcf", "csv", "tsv", "infer"}. If "infer" then the class will try to find the extension using the file name.
:param first_column_is_index: used for csv and tsv files to indicate if the first column should be used as identifier for samples/variants.
:param comments: The token to be used to filter out the lines indicating comments.
:return: None
"""
self.target_is_gonna_be_phased = target_is_gonna_be_phased_or_haps
self.ref_file_extension, self.ref_separator = self.__find_file_extension(file_path, file_format, delimiter)
if file_format == "infer":
pprint(f"Ref file format is {self.ref_file_extension}.")
self.reference_panel = self.__read_csv(file_path, is_reference=True, is_vcf=False, separator=self.ref_separator,
first_column_is_index=first_column_is_index,
comments=comments) if self.ref_file_extension != 'vcf' else self.__read_csv(
file_path, is_reference=True, is_vcf=True, separator='\t', first_column_is_index=False, comments="##")
if self.ref_file_extension != "vcf":
if variants_as_columns:
self.reference_panel = self.reference_panel.transpose()
self.reference_panel.reset_index(drop=False, inplace=True)
self.reference_panel.rename(columns={self.reference_panel.columns[0]: "ID"}, inplace=True)
else: # VCF
self.ref_sample_value_index += 8
self.ref_is_hap = not ("|" in self.reference_panel.iloc[0, self.ref_sample_value_index] or "/" in
self.reference_panel.iloc[0, self.ref_sample_value_index])
self.ref_is_phased = "|" in self.reference_panel.iloc[0, self.ref_sample_value_index]
## For now I won't support merging haploids into unphased data
if self.ref_is_hap and not target_is_gonna_be_phased_or_haps:
raise ValueError(
"The reference contains haploids while the target will be unphased diploids. The model cannot predict the target at this rate.")
if not (self.ref_is_phased or self.ref_is_hap) and target_is_gonna_be_phased_or_haps:
raise ValueError(
"The reference contains unphased diploids while the target will be phased or haploid data. The model cannot predict the target at this rate.")
self.VARIANT_COUNT = self.reference_panel.shape[0]
pprint(
f"{self.reference_panel.shape[1] - (self.ref_sample_value_index - 1)} {'haploid' if self.ref_is_hap else 'diploid'} samples with {self.VARIANT_COUNT} variants found!")
self.is_phased = target_is_gonna_be_phased_or_haps and (self.ref_is_phased or self.ref_is_hap)
original_allele_sep = "|" if self.ref_is_phased or self.ref_is_hap else "/"
final_allele_sep = "|" if self.is_phased else "/"
def get_diploid_allels(genotype_vals):
allele_set = set()
for genotype_val in genotype_vals:
v1, v2 = genotype_val.split(final_allele_sep)
allele_set.update([v1, v2])
return np.array(list(allele_set))
genotype_vals = pd.unique(self.reference_panel.iloc[:, self.ref_sample_value_index - 1:].values.ravel('K'))
# print(f"DEBUG: Unique genotypes in dataset: {genotype_vals}")
if self.ref_is_phased and not target_is_gonna_be_phased_or_haps: # In this case ref is not haps due to the above checks
# Convert phased values in the reference to unphased values
phased_to_unphased_dict = {}
for i in range(genotype_vals.shape[0]):
key = genotype_vals[i]
v1, v2 = [int(s) for s in genotype_vals[i].split(original_allele_sep)]
genotype_vals[i] = f"{min(v1, v2)}/{max(v1, v2)}"
phased_to_unphased_dict[key] = genotype_vals[i]
self.reference_panel.iloc[:, self.ref_sample_value_index - 1:].replace(phased_to_unphased_dict,
inplace=True)
self.genotype_vals = np.unique(genotype_vals)
self.alleles = get_diploid_allels(self.genotype_vals) if not self.ref_is_hap else self.genotype_vals
self.allele_count = len(self.alleles)
self.MISSING_VALUE = self.allele_count if self.is_phased else len(self.genotype_vals)
# pprint(f"DEBUG: self.genotype_vals: {self.genotype_vals}")
if self.is_phased:
self.hap_map = {str(v): i for i, v in enumerate(list(sorted(self.alleles)))}
self.hap_map.update({".": self.MISSING_VALUE})
self.r_hap_map = {i: k for k, i in self.hap_map.items()}
self.map_preds_2_allele = np.vectorize(lambda x: self.r_hap_map[x])
# pprint(f"DEBUG: hap_map: {self.hap_map}")
# pprint(f"DEBUG: r_hap_map: {self.r_hap_map}")
else:
unphased_missing_genotype = "./."
self.replacement_dict = {g: i for i, g in enumerate(list(sorted(self.genotype_vals)))}
self.replacement_dict[unphased_missing_genotype] = self.MISSING_VALUE
self.reverse_replacement_dict = {v: k for k, v in self.replacement_dict.items()}
self.SEQ_DEPTH = self.allele_count + 1 if self.is_phased else len(self.genotype_vals)
# pprint(f"DEBUG:self.SEQ_DEPTH: {self.SEQ_DEPTH}")
pprint("Done!")
def assign_test_set(self, file_path,
variants_as_columns=False,
delimiter=None,
file_format="infer",
first_column_is_index=True,
comments="##") -> None:
"""
:param file_path: reference panel or the training file path. Currently, VCF, CSV, and TSV are supported
:param variants_as_columns: Whether the columns are variants and rows are samples or vice versa.
:param delimiter: the seperator used for the file
:param file_format: one of {"vcf", "csv", "tsv", "infer"}. If "infer" then the class will try to find the extension using the file name.
:param first_column_is_index: used for csv and tsv files to indicate if the first column should be used as identifier for samples/variants.
:param comments: The token to be used to filter out the lines indicating comments.
:return: None
"""
if self.reference_panel is None:
raise RuntimeError("First you need to use 'DataReader.assign_training_set(...) to assign a training set.' ")
self.target_file_extension, separator = self.__find_file_extension(file_path, file_format, delimiter)
test_df = self.__read_csv(file_path, is_reference=False, is_vcf=False, separator=separator,
first_column_is_index=first_column_is_index,
comments=comments) if self.ref_file_extension != 'vcf' else self.__read_csv(file_path,
is_reference=False,
is_vcf=True,
separator='\t',
first_column_is_index=False,
comments="##")
if self.target_file_extension != "vcf":
if variants_as_columns:
test_df = test_df.transpose()
test_df.reset_index(drop=False, inplace=True)
test_df.rename(columns={test_df.columns[0]: "ID"}, inplace=True)
else: # VCF
self.target_sample_value_index += 8
self.target_is_hap = not ("|" in test_df.iloc[0, self.target_sample_value_index] or "/" in test_df.iloc[
0, self.target_sample_value_index])
is_phased = "|" in test_df.iloc[0, self.target_sample_value_index]
test_var_count = test_df.shape[0]
pprint(f"{test_var_count} {'haplotype' if self.target_is_hap else 'diplotype'} variants found!")
if (self.target_is_hap or is_phased) and not (self.ref_is_phased or self.ref_is_hap):
raise RuntimeError("The training set contains unphased data. The target must be unphased as well.")
if self.ref_is_hap and not (self.target_is_hap or is_phased):
raise RuntimeError(
"The training set contains haploids. The current software version supports phased or haploids as the target set.")
self.target_set = test_df.merge(right=self.reference_panel["ID"], on='ID', how='right')
if self.target_file_extension == "vcf" == self.ref_file_extension:
self.target_set[self.reference_panel.columns[:9]] = self.reference_panel[self.reference_panel.columns[:9]]
self.target_set = self.target_set.astype('str')
self.target_set.fillna("." if self.target_is_hap else ".|." if self.is_phased else "./.", inplace=True)
self.target_set.replace("nan", "." if self.target_is_hap else ".|." if self.is_phased else "./.", inplace=True)
# self.target_set = self.target_set.astype('category') # Was causing random bugs!
pprint("Done!")
def __map_hap_2_ind_parent_1(self, x) -> int:
return self.hap_map[x.split('|')[0]]
def __map_hap_2_ind_parent_2(self, x) -> int:
return self.hap_map[x.split('|')[1]]
def __map_haps_2_ind(self, x) -> int:
return self.hap_map[x]
def __diploids_to_hap_vecs(self, data: pd.DataFrame) -> np.ndarray:
_x = np.empty((data.shape[1] * 2, data.shape[0]), dtype=np.int32)
_x[0::2] = self.map_values_1_vec(data.values.T)
_x[1::2] = self.map_values_2_vec(data.values.T)
return _x
def __get_forward_data(self, data: pd.DataFrame) -> np.ndarray:
if self.is_phased:
is_haps = "|" not in data.iloc[0, 0]
if not is_haps:
return self.__diploids_to_hap_vecs(data)
else:
return self.map_haps_to_vec(data.values.T)
else:
return data.replace(self.replacement_dict).values.T.astype(np.int32)
def get_ref_set(self, starting_var_index=0, ending_var_index=0) -> np.ndarray:
if 0 <= starting_var_index < ending_var_index:
return self.__get_forward_data(
data=self.reference_panel.iloc[starting_var_index:ending_var_index, self.ref_sample_value_index - 1:])
else:
pprint("No variant indices provided or indices not valid, using the whole sequence...")
return self.__get_forward_data(data=self.reference_panel.iloc[:, self.ref_sample_value_index - 1:])
def get_target_set(self, starting_var_index=0, ending_var_index=0) -> np.ndarray:
if 0 <= starting_var_index < ending_var_index:
return self.__get_forward_data(
data=self.target_set.iloc[starting_var_index:ending_var_index, self.target_sample_value_index - 1:])
else:
pprint("No variant indices provided or indices not valid, using the whole sequence...")
return self.__get_forward_data(data=self.target_set.iloc[:, self.target_sample_value_index - 1:])
def __convert_hap_probs_to_diploid_genotypes(self, allele_probs) -> np.ndarray:
n_haploids, n_variants, n_alleles = allele_probs.shape
# squared_allele_probs = allele_probs ** 10 # To reduce entropy
# normalized_squared_probabilities = squared_allele_probs / np.sum(squared_allele_probs, axis=-1, keepdims=True)
if n_haploids % 2 != 0:
raise ValueError("Number of haploids should be even.")
if n_alleles == 2:
print("Outputting GP in predictions.")
n_samples = n_haploids // 2
genotypes = np.empty((n_samples, n_variants), dtype=object)
haploids_as_diploids = allele_probs.reshape((n_samples, 2, n_variants, -1))
variant_genotypes = self.map_preds_2_allele(
np.argmax(haploids_as_diploids, axis=-1)) # (n_haploids, 2, n_variants)
def process_variant_in_sample(haps_for_sample_at_variant, variant_genotypes_for_sample_at_variant):
if n_alleles > 2:
return '|'.join(variant_genotypes_for_sample_at_variant)
else:
# output GP
phased_probs = np.outer(haps_for_sample_at_variant[0], haps_for_sample_at_variant[1]).flatten()
unphased_probs = np.array([phased_probs[0], phased_probs[1] + phased_probs[2], phased_probs[-1]])
unphased_probs_str = ",".join([f"{v:.6f}" for v in unphased_probs])
alt_dosage = np.dot(unphased_probs, [0, 1, 2])
return '|'.join(variant_genotypes_for_sample_at_variant) + f":{unphased_probs_str}:{alt_dosage:.3f}"
def process_sample(i):
return np.array([
process_variant_in_sample(haploids_as_diploids[i, :, j, :], variant_genotypes[i, :, j])
for j in range(n_variants)
])
# Parallel processing with joblib
genotypes = Parallel(n_jobs=-1)(delayed(process_sample)(i) for i in tqdm(range(n_samples)))
return np.array(genotypes)
def __convert_hap_probs_to_hap_genotypes(self, allele_probs) -> np.ndarray:
return np.argmax(allele_probs, axis=1).astype(str)
def __convert_unphased_probs_to_genotypes(self, allele_probs) -> np.ndarray:
n_samples, n_variants, n_alleles = allele_probs.shape
genotypes = np.zeros((n_samples, n_variants), dtype=object)
for i in tqdm(range(n_samples)):
for j in range(n_variants):
unphased_probs = allele_probs[i, j]
variant_genotypes = np.vectorize(self.reverse_replacement_dict.get)(
np.argmax(unphased_probs, axis=-1)).flatten()
genotypes[i, j] = variant_genotypes
return genotypes
def __get_headers_for_output(self, contain_probs, chr=22):
headers = ["##fileformat=VCFv4.2",
'''##source=STI v1.2.0''',
'''##INFO=<ID=AF,Number=A,Type=Float,Description="Estimated Alternate Allele Frequency">''',
'''##INFO=<ID=MAF,Number=1,Type=Float,Description="Estimated Minor Allele Frequency">''',
'''##INFO=<ID=AVG_CS,Number=1,Type=Float,Description="Average Call Score">''',
'''##INFO=<ID=IMPUTED,Number=0,Type=Flag,Description="Marker was imputed">''',
'''##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">''',
]
probs_headers = [
'''##FORMAT=<ID=DS,Number=A,Type=Float,Description="Estimated Alternate Allele Dosage : [P(0/1)+2*P(1/1)]">''',
'''##FORMAT=<ID=GP,Number=G,Type=Float,Description="Estimated Posterior Probabilities for Genotypes 0/0, 0/1 and 1/1">''']
if contain_probs:
headers.extend(probs_headers)
return headers
def __convert_genotypes_to_vcf(self, genotypes, pred_format="GT:GP:DS"):
new_vcf = self.target_set.copy()
new_vcf[
new_vcf.columns[self.target_sample_value_index - 1:]] = genotypes
new_vcf["FORMAT"] = pred_format
new_vcf["QUAL"] = "."
new_vcf["FILTER"] = "."
new_vcf["INFO"] = "IMPUTED"
return new_vcf
def preds_to_genotypes(self, predictions: Union[str, np.ndarray]) -> pd.DataFrame:
"""
:param predictions: The path to numpy array stored on disk or numpy array of shape (n_samples, n_variants, n_alleles)
:return: numpy array of the same shape, with genotype calls, e.g., "0/1"
"""
if isinstance(predictions, str):
preds = np.load(predictions)
else:
preds = predictions
target_df = self.target_set.copy()
if not self.is_phased:
target_df[
target_df.columns[self.target_sample_value_index - 1:]] = self.__convert_unphased_probs_to_genotypes(
preds).T
elif self.target_is_hap:
target_df[
target_df.columns[self.target_sample_value_index - 1:]] = self.__convert_hap_probs_to_hap_genotypes(
preds).T
else:
pred_format = "GT:GP:DS" if preds.shape[-1] == 2 else "GT"
target_df = self.__convert_genotypes_to_vcf(self.__convert_hap_probs_to_diploid_genotypes(
preds).T, pred_format)
return target_df
def write_ligated_results_to_file(self, df: pd.DataFrame, file_name: str, compress=True) -> str:
to_write_format = self.ref_file_extension
with gzip.open(f"{file_name}.{to_write_format}.gz", 'wt') if compress else open(
f"{file_name}.{to_write_format}", 'wt') as f_out:
# write info
if self.ref_file_extension == "vcf":
f_out.write(
"\n".join(self.__get_headers_for_output(contain_probs="GP" in df["FORMAT"].values[0])) + "\n")
else: # Not the best idea?
f_out.write("\n".join(self.ref_n_header_lines))
# pprint(f"Data to be saved shape: {df.shape}")
df.to_csv(f"{file_name}.{to_write_format}.gz" if compress else f"{file_name}.{to_write_format}",
sep=self.ref_separator, mode='a', index=False)
return f"{file_name}.{to_write_format}.gz" if compress else f"{file_name}.{to_write_format}"
@tf.function()
def add_attention_mask(x_sample, y_sample, depth, min_mr, max_mr):
seq_len = tf.shape(x_sample)[0]
masking_rate = tf.random.uniform([], min_mr, max_mr)
mask_size = tf.cast(tf.cast(seq_len, tf.float32) * masking_rate, dtype=tf.int32)
mask_idx = tf.reshape(tf.random.shuffle(tf.range(seq_len))[:mask_size], (-1, 1))
updates = tf.ones(shape=(tf.shape(mask_idx)[0]), dtype=tf.int32) * (depth - 1)
X_masked = tf.tensor_scatter_nd_update(x_sample, mask_idx, updates)
return tf.one_hot(X_masked, depth), tf.one_hot(y_sample, depth - 1)
@tf.function()
def onehot_encode(x_sample, depth):
return tf.one_hot(x_sample, depth)
def calculate_maf(genotype_array):
allele_counts = np.apply_along_axis(lambda x: np.bincount(x, minlength=3), axis=0, arr=genotype_array)
total_alleles = 2 * genotype_array.shape[0]
minor_allele_counts = 2 * allele_counts[2] + allele_counts[1]
maf = minor_allele_counts / total_alleles
return maf
def remove_similar_rows(array):
print("Finding duplicate haploids in training set.")
unique_array = np.unique(array, axis=0)
print(f"Removed {len(array) - len(unique_array)} rows. {len(unique_array)} training samples remaining.")
return unique_array
def get_training_dataset(x, batch_size, depth, strategy,
offset_before=0, offset_after=0,
training=True, masking_rates=(.5, .99)):
AUTO = tf.data.AUTOTUNE