The mxnet implementation is deepinsight/insightface/RetinaFaceAntiCov.
1. generate retinafaceAntiCov.wts from mxnet implementation.
git clone /~https://github.com/deepinsight/insightface.git
cd insightface/RetinaFaceAntiCov
// download its weights 'cov2.zip', put it into insightface/RetinaFaceAntiCov, and unzip it
// put tensorrtx/retinafaceAntiCov/gen_wts.py into insightface/RetinaFaceAntiCov
python gen_wts.py
// a file 'retinafaceAntiCov.wts' will be generated.
2. put retinafaceAntiCov.wts into tensorrtx/retinafaceAntiCov, build and run
git clone /~https://github.com/wang-xinyu/tensorrtx.git
cd tensorrtx/retinafaceAntiCov
// put retinafaceAntiCov.wts here
mkdir build
cd build
cmake ..
make
sudo ./retinafaceAntiCov -s // build and serialize model to file i.e. 'retinafaceAntiCov.engine'
wget http://www.kaixian.tv/gd/d/file/201611/07/23efff3a26e2385620e719378c654fb1.jpg -O test.jpg
sudo ./retinafaceAntiCov -d // deserialize model file and run inference.
3. check the image generated, as follows 'out.jpg'
- Input shape
INPUT_H
,INPUT_W
defined indecode.h
- FP16/FP32 can be selected by the macro
USE_FP16
inretinafaceAntiCov.cpp
- GPU id can be selected by the macro
DEVICE
inretinafaceAntiCov.cpp
See the readme in home page.