forked from ClementPinard/SfmLearner-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss_functions.py
127 lines (97 loc) · 4.49 KB
/
loss_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from __future__ import division
import torch
from torch import nn
import torch.nn.functional as F
from inverse_warp import inverse_warp
def photometric_reconstruction_loss(tgt_img, ref_imgs, intrinsics,
depth, explainability_mask, pose,
rotation_mode='euler', padding_mode='zeros'):
def one_scale(depth, explainability_mask):
assert(explainability_mask is None or depth.size()[2:] == explainability_mask.size()[2:])
assert(pose.size(1) == len(ref_imgs))
reconstruction_loss = 0
b, _, h, w = depth.size()
downscale = tgt_img.size(2)/h
tgt_img_scaled = F.interpolate(tgt_img, (h, w), mode='area')
ref_imgs_scaled = [F.interpolate(ref_img, (h, w), mode='area') for ref_img in ref_imgs]
intrinsics_scaled = torch.cat((intrinsics[:, 0:2]/downscale, intrinsics[:, 2:]), dim=1)
warped_imgs = []
diff_maps = []
for i, ref_img in enumerate(ref_imgs_scaled):
current_pose = pose[:, i]
ref_img_warped, valid_points = inverse_warp(ref_img, depth[:,0], current_pose,
intrinsics_scaled,
rotation_mode, padding_mode)
diff = (tgt_img_scaled - ref_img_warped) * valid_points.unsqueeze(1).float()
if explainability_mask is not None:
diff = diff * explainability_mask[:,i:i+1].expand_as(diff)
reconstruction_loss += diff.abs().mean()
assert((reconstruction_loss == reconstruction_loss).item() == 1)
warped_imgs.append(ref_img_warped[0])
diff_maps.append(diff[0])
return reconstruction_loss, warped_imgs, diff_maps
warped_results, diff_results = [], []
if type(explainability_mask) not in [tuple, list]:
explainability_mask = [explainability_mask]
if type(depth) not in [list, tuple]:
depth = [depth]
total_loss = 0
for d, mask in zip(depth, explainability_mask):
loss, warped, diff = one_scale(d, mask)
total_loss += loss
warped_results.append(warped)
diff_results.append(diff)
return total_loss, warped_results, diff_results
def explainability_loss(mask):
if type(mask) not in [tuple, list]:
mask = [mask]
loss = 0
for mask_scaled in mask:
ones_var = torch.ones_like(mask_scaled)
loss += nn.functional.binary_cross_entropy(mask_scaled, ones_var)
return loss
def smooth_loss(pred_map):
def gradient(pred):
D_dy = pred[:, :, 1:] - pred[:, :, :-1]
D_dx = pred[:, :, :, 1:] - pred[:, :, :, :-1]
return D_dx, D_dy
if type(pred_map) not in [tuple, list]:
pred_map = [pred_map]
loss = 0
weight = 1.
for scaled_map in pred_map:
dx, dy = gradient(scaled_map)
dx2, dxdy = gradient(dx)
dydx, dy2 = gradient(dy)
loss += (dx2.abs().mean() + dxdy.abs().mean() + dydx.abs().mean() + dy2.abs().mean())*weight
weight /= 2.3 # don't ask me why it works better
return loss
@torch.no_grad()
def compute_errors(gt, pred, crop=True):
abs_diff, abs_rel, sq_rel, a1, a2, a3 = 0,0,0,0,0,0
batch_size = gt.size(0)
'''
crop used by Garg ECCV16 to reprocude Eigen NIPS14 results
construct a mask of False values, with the same size as target
and then set to True values inside the crop
'''
if crop:
crop_mask = gt[0] != gt[0]
y1,y2 = int(0.40810811 * gt.size(1)), int(0.99189189 * gt.size(1))
x1,x2 = int(0.03594771 * gt.size(2)), int(0.96405229 * gt.size(2))
crop_mask[y1:y2,x1:x2] = 1
for current_gt, current_pred in zip(gt, pred):
valid = (current_gt > 0) & (current_gt < 80)
if crop:
valid = valid & crop_mask
valid_gt = current_gt[valid]
valid_pred = current_pred[valid].clamp(1e-3, 80)
valid_pred = valid_pred * torch.median(valid_gt)/torch.median(valid_pred)
thresh = torch.max((valid_gt / valid_pred), (valid_pred / valid_gt))
a1 += (thresh < 1.25).float().mean()
a2 += (thresh < 1.25 ** 2).float().mean()
a3 += (thresh < 1.25 ** 3).float().mean()
abs_diff += torch.mean(torch.abs(valid_gt - valid_pred))
abs_rel += torch.mean(torch.abs(valid_gt - valid_pred) / valid_gt)
sq_rel += torch.mean(((valid_gt - valid_pred)**2) / valid_gt)
return [metric.item() / batch_size for metric in [abs_diff, abs_rel, sq_rel, a1, a2, a3]]