-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·431 lines (365 loc) · 23.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from __future__ import print_function
import argparse
import os
import torch
import pandas as pd
import numpy as np
import json
from functools import partial
from ray import tune
from ray.air.config import RunConfig
import ray
import cProfile, pstats
# internal imports
from utils.core_utils import train, seed_torch
from datasets.dataset_generic import Generic_MIL_Dataset
from utils.tuning_utils import TrialPlateauStopper
import warnings
warnings.simplefilter(action='ignore', category=UserWarning)
## set maximum number of raytune trials pending at once to 5
os.environ['TUNE_MAX_PENDING_TRIALS_PG'] = "5"
def main():
# create results directory if necessary
if not os.path.isdir(args.results_dir):
os.mkdir(args.results_dir)
if args.k_start == -1:
start = 0
else:
start = args.k_start
if args.k_end == -1:
end = args.k
else:
end = args.k_end
if args.tuning:
ray.init(num_gpus=1,runtime_env={"TUNE_MAX_PENDING_TRIALS_PG": 8})
if args.hardware=='DGX':
if args.model_size in ["hipt_big","hipt_medium","hipt_small","hipt_smaller","hipt_smallest",]:
hardware={"cpu":32,"gpu":0.2}
else:
hardware={"cpu":16,"gpu":0.3333}
elif args.hardware=='DGX1':
hardware={"cpu":48,"gpu":1}
elif args.hardware=='DGX2':
hardware={"cpu":32,"gpu":0.5}
else:
if args.task =='treatment':
hardware={"cpu":0.8,"gpu":0.2}
else:
hardware={"cpu":2,"gpu":0.5}
with open(args.tuning_config_file) as f:
search_space = f.read()
search_space = json.loads(search_space)
for key, value in search_space.items():
search_space[key] = eval(value)
if args.tuning_type == "asha":
scheduler = tune.schedulers.ASHAScheduler(
metric="loss",
mode="min",
grace_period=min(20,args.max_epochs),
reduction_factor=2,
max_t=args.max_epochs)
elif args.tuning_type == "grid":
scheduler = tune.schedulers.ASHAScheduler(
metric="loss",
mode="min",
grace_period=args.max_epochs,
reduction_factor=2,
max_t=args.max_epochs)
else:
raise NotImplementedError
reporter = tune.CLIReporter(
metric_columns=["loss", "auc", "training_iteration"],
max_report_frequency=5,
max_progress_rows=20,
metric="loss",
mode="min",
sort_by_metric=True)
all_test_auc = []
all_val_auc = []
all_test_acc = []
all_val_acc = []
folds = np.arange(start, end)
for i in folds:
seed_torch(args.seed)
train_dataset, val_dataset, test_dataset = dataset.return_splits(from_id=False,
csv_path='{}/splits_{}.csv'.format(args.split_dir, i))
if args.perturb:
train_dataset.perturb_features(True)
if args.use_augs:
train_dataset.use_augmentations(True)
datasets = (train_dataset, val_dataset, test_dataset)
##class_counts to be used in balanced cross entropy if enabled
class_counts_train=0
class_counts_val=0
if args.bag_loss == 'balanced_ce':
class_counts_train=dataset.count_by_class(csv_path='{}/splits_{}.csv'.format(args.split_dir, i))
class_counts_val=dataset.count_by_class(csv_path='{}/splits_{}.csv'.format(args.split_dir, i),split='val')
#class_counts=[class_counts_train[i]+class_counts_val[i] for i in range(len(class_counts_train))]
if args.tuning:
seed_torch(args.seed)
stopper=TrialPlateauStopper(metric="loss",mode="min",num_results=args.tuning_patience,grace_period=args.tuning_patience)
if args.continue_tuning:
tuner = tune.Tuner.restore(
path="~/ray_results/test_run"
)
else:
tuner = tune.Tuner(tune.with_resources(partial(train,datasets=datasets,cur=i,class_counts_train=class_counts_train,class_counts_val=class_counts_val,args=args),hardware),param_space=search_space, run_config=RunConfig(name="test_run",stop=stopper, progress_reporter=reporter),tune_config=tune.TuneConfig(scheduler=scheduler,num_samples=args.num_tuning_experiments))
results = tuner.fit()
results_df=results.get_dataframe(filter_metric="loss", filter_mode="min")
results_df.to_csv(args.tuning_output_file,index=False)
best_trial = results.get_best_result("loss", "min","last-10-avg")
print("best trial:", best_trial)
print("Best trial config: {}".format(best_trial.config))
print("Best trial final loss: {}".format(best_trial.metrics["loss"]))
print("Best trial final auc: {}".format(best_trial.metrics["auc"]))
print("Best trial final acuracy: {}".format(best_trial.metrics["accuracy"]))
else:
test_auc, val_auc, test_acc, val_acc = train(None,datasets, i, class_counts_train, class_counts_val, args)
all_test_auc.append(test_auc)
all_val_auc.append(val_auc)
all_test_acc.append(test_acc)
all_val_acc.append(val_acc)
if not args.tuning:
final_df = pd.DataFrame({'folds': folds, 'test_auc': all_test_auc,
'val_auc': all_val_auc, 'test_acc': all_test_acc, 'val_acc' : all_val_acc})
if len(folds) != args.k:
save_name = 'summary_partial_{}_{}.csv'.format(start, end)
else:
save_name = 'summary.csv'
final_df.to_csv(os.path.join(args.results_dir, save_name))
# Generic training settings
parser = argparse.ArgumentParser(description='Configurations for WSI Training')
## Folders
parser.add_argument('--data_root_dir', type=str, default="/",
help='directory containing features folders')
parser.add_argument('--features_folder', type=str, default="/",
help='folder within data_root_dir containing the features - must contain pt_files/h5_files subfolder')
parser.add_argument('--features_folder_aug', type=str, default="/",
help='folder within data_root_dir containing augmented features if these are being used during training - must contain pt_files/h5_files subfolder')
parser.add_argument('--small_features_folder', type=str, default="/",
help='folder within data_root_dir containing the small features if needed (only used in graph_ms)- must contain pt_files/h5_files subfolder')
parser.add_argument('--coords_path', type=str, default=None,
help='path to coords pt files if needed')
parser.add_argument('--small_coords_path', type=str, default=None,
help='path to small coords pt files if needed (only used in graph_ms)')
parser.add_argument('--graph_path', type=str, default=None,help='path to folder containing pre-created graph features and adjacencies from create_graphs.py')
parser.add_argument('--csv_path',type=str,default=None,help='path to dataset_csv file')
parser.add_argument('--exp_code', type=str, help='experiment code for saving results')
parser.add_argument('--log_data', action='store_true', default=False, help='log data using tensorboard')
## Training settings
parser.add_argument('--max_epochs', type=int, default=200,
help='maximum number of epochs to train (default: 200)')
parser.add_argument('--min_epochs', type=int, default=0,
help='minimum number of epochs to train before early stopping (default: 0)')
parser.add_argument('--early_stopping', action='store_true', default=False, help='enable early stopping')
parser.add_argument('--continue_training', action='store_true', default=False, help='Continue model training from latest checkpoint')
parser.add_argument('--opt', type=str, choices = ['adam','adamw', 'sgd'], default='adam', help='optimizer for model training')
parser.add_argument('--lr', type=float, default=1e-4,
help='learning rate (default: 0.0001)')
parser.add_argument('--lr_factor', type=float, default=0.5,
help='factor to reduce lr by after plateau')
parser.add_argument('--lr_patience', type=int, default=15,
help='number of epochs considered a lr plateau')
parser.add_argument('--beta1', type=float, default=0.9,
help='beta1 in Adam optimizer')
parser.add_argument('--beta2', type=float, default=0.999,
help='beta2 in Adam optimizer')
parser.add_argument('--eps', type=float, default=1e-8,
help='eps in Adam optimizer')
parser.add_argument('--reg', type=float, default=1e-5,
help='weight decay (L2 regularisation) in Adam optimizer')
parser.add_argument('--max_patches_per_slide', type=int, default=float('inf'), help='Number of patches to sample per slide during training. This is purely random patch sampling, though more complex options can be seen at /~https://github.com/scjjb/DRAS-MIL.')
parser.add_argument('--perturb', action='store_true', default=False, help='perturb features during training')
parser.add_argument('--perturb_variance', type=float, default=0.1, help='variance of feature perturbations')
parser.add_argument('--drop_out', type=float, default=0.25, help='proportion of weights dropped out before fully connected layers')
parser.add_argument('--weighted_sample', action='store_true', default=False, help='enable weighted sampling during training')
parser.add_argument('--bag_loss', type=str, choices=['svm', 'ce', 'balanced_ce'], default='ce',
help='slide-level classification loss function (default: ce)')
## Model settings
parser.add_argument('--model_type', type=str, choices=['clam_sb', 'clam_mb', 'mil', 'graph', 'graph_ms','patchgcn'], default='clam_sb', help='type of model (default: clam_sb, clam w/ single attention branch)')
parser.add_argument('--model_size', type=str, choices=['256','tinier3','tinier_resnet18','tinier2_resnet18','tiny_resnet18','small_resnet18','large_resnet18','mega_resnet18','tinier', 'tiny128','tiny','smaller','small', 'big','hipt_mega_tiny','hipt_mega_small','hipt_mega_big','hipt_mega_mega','hipt_mega_mega2','hipt_const','hipt_big','hipt_medium','hipt_small','hipt_smaller','hipt_smallest'], default='small', help='size of model, does not affect mil')
parser.add_argument('--task', type=str, choices=['ovarian_5class','ovarian_1vsall','nsclc','treatment','treatment_switched'])
## Graph model options
parser.add_argument('--graph_edge_distance',type=int,default=750,help="Maximum distance between nodes in graph to add edges.")
parser.add_argument('--offset',type=int,default=512,help="The offset applied to the larger patches in graph_ms, which will typically be half of the size of the smaller magnification patches. This is needed due to coords being top-left rather than centre")
parser.add_argument('--message_passing',type=str, choices=['standard','gatv2'], default='standard',help='type of graph message passing layers, with gatv2 being attention-based')
parser.add_argument('--gat_heads',type=int,default=1,help='number of heads on GATv2 message passing layers')
parser.add_argument('--message_passings', type=int, default=1, help='number of message passing layers for each pooling layer, where each message passing connects first order neighbors')
parser.add_argument('--pooling', type=str, choices=['topk','sag'], default='topk', help='type of pooling layers, with sag being self-attention based')
parser.add_argument('--pooling_factor',type=float,default=0.8,help="proportion of nodes remaining after each graph pooling layer")
parser.add_argument('--pooling_layers',type=int,default=3,help="number of graph message passing and pooling layers")
parser.add_argument('--embedding_size',type=int,default=128,help="size of graph node embeddings")
parser.add_argument('--plot_graph',choices=["none","together","seperate"],default="none",help="whether to plot a graph in graph_ms, only seperate actually works at the minute")
parser.add_argument('--ms_features',choices=["naive","seperate_zero","seperate_avg"],default="naive",help="whether to assume all patch features are the same (naive) or keep them separate across magnifications")
## Data settings
parser.add_argument('--label_frac', type=float, default=1.0,
help='fraction of training labels (default: 1.0)')
parser.add_argument('--seed', type=int, default=1,
help='random seed for reproducible experiment (default: 1)')
parser.add_argument('--k', type=int, default=10, help='number of folds (default: 10)')
parser.add_argument('--k_start', type=int, default=-1, help='start fold (default: -1, last fold)')
parser.add_argument('--k_end', type=int, default=-1, help='end fold (default: -1, first fold)')
parser.add_argument('--results_dir', default='./results', help='results directory (default: ./results)')
parser.add_argument('--split_dir', type=str, default=None,
help='manually specify the set of splits to use, '
+'instead of infering from the task and label_frac argument (default: None)')
parser.add_argument('--use_augs', action='store_true', default=False, help='use pre-augmented versions of the training slides during training. The features to be saved in the same place as the non-augmented features, with the addition of "aug0", "aug1" etc. before the .pt in each filename')
parser.add_argument('--number_of_augs', type=int, default=1, help='number of augmented versions of each real image that are available')
## On-line feature extraction options (disregard if using pre-extracted features)
parser.add_argument('--extract_features', action='store_true', default=False, help='extract features during training')
parser.add_argument('--augment_features', action='store_true', default=False, help='if extracting features, whether to apply augmentations before feature extraction')
parser.add_argument('--model_architecture',type=str,choices=['resnet18','resnet50','levit_128s'],default='resnet50')
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--pretraining_dataset',type=str,choices=['ImageNet','Histo'],default='ImageNet')
parser.add_argument('--data_h5_dir', type=str, default=None)
parser.add_argument('--data_slide_dir', type=str, default=None)
parser.add_argument('--slide_ext', type=str, default= '.svs')
parser.add_argument('--custom_downsample', type=int, default=1)
parser.add_argument('--target_patch_size', type=int, default=-1)
## Tuning options
parser.add_argument('--tuning', action='store_true', default=False, help='run hyperparameter tuning')
parser.add_argument('--tuning_type',type=str, choices=['grid','asha'], default='grid',help='Grid is for rigorous comparison of a few options, Asha is for exploration of wider search spaces with weaker options stopped much earlier')
parser.add_argument('--tuning_config_file', type=str, default=None, help='full path to txt file containing search space dictionary')
parser.add_argument('--tuning_output_file',type=str,default="tuning_results/tuning_output.csv",help="where to save tuning outputs")
parser.add_argument('--tuning_patience', type=int, default=30, help="How many epochs used in loss plateau stopper during tuning")
parser.add_argument('--num_tuning_experiments',type=int,default=100,help="Number of tuning experiments. If using grid tuning this is how many times each config will repeat, if sampling in ranges then this will be the number of overall experiments.")
parser.add_argument('--hardware',type=str, choices=['DGX','DGX1','DGX2','PC'], default='DGX',help='sets amount of CPU and GPU to use per experiment')
parser.add_argument('--continue_tuning', action='store_true', default=False, help='Continue partially-complete tuning experiment or re-evaluate finished experiments')
## CLAM options
parser.add_argument('--no_inst_cluster', action='store_true', default=False,
help='disable instance-level clustering to use ABMIL rather than CLAM')
parser.add_argument('--inst_loss', type=str, choices=['svm', 'ce', None], default=None,
help='instance-level clustering loss function (default: None)')
parser.add_argument('--subtyping', action='store_true', default=False,
help='subtyping problem')
parser.add_argument('--bag_weight', type=float, default=0.7,
help='clam: weight coefficient for bag-level loss (default: 0.7)')
parser.add_argument('--B', type=int, default=8, help='number of positive/negative patches to sample for clam')
## Sampling setting (disregard if not the focus)
parser.add_argument('--sampling', action='store_true', default=False, help='sampling for faster training')
parser.add_argument('--sampling_type', type=str, choices=['spatial','textural','newest'],default='spatial',help='type of sampling to use')
parser.add_argument('--samples_per_iteration', type=int, default=100, help='number of patches to sample per sampling iteration')
parser.add_argument('--resampling_iterations', type=int, default=10, help='number of resampling iterations (not including the initial sample)')
parser.add_argument('--sampling_random', type=float, default=0.2, help='proportion of samples which are completely random per iteration')
parser.add_argument('--sampling_random_delta',type=float, default=0.02, help='reduction in sampling_random per iteration')
parser.add_argument('--sampling_neighbors', type=int, default=20, help='number of nearest neighbors to consider when resampling')
parser.add_argument('--final_sample_size',type=int,default=100,help='number of patches for final sample')
parser.add_argument('--texture_model',type=str, choices=['resnet50','levit_128s'], default='resnet50',help='model to use for feature extraction in textural sampling')
parser.add_argument('--sampling_average',action='store_true',default=False,help='Take the sampling weights as averages rather than maxima to leverage more learned information')
parser.add_argument('--weight_smoothing',type=float,default=0.15,help='Power applied to attention scores to generate sampling weights')
parser.add_argument('--no_sampling_epochs',type=int,default=20,help='number of epochs to complete full slide processing before beginning sampling')
parser.add_argument('--fully_random',action='store_true', default=False, help='Take entirely random samples (no active sampling)')
## Developer settings
parser.add_argument('--debug_loader', action='store_true', default=False,
help='debugger arg which runs through the loader without training the model')
parser.add_argument('--profile', action='store_true', default=False,
help='show profile of longest running code sections')
parser.add_argument('--profile_rows', type=int, default=10, help='number of rows to show from profiler (requires --profile to show any)')
args = parser.parse_args()
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
seed_torch(args.seed)
encoding_size = 1024
settings = {'num_splits': args.k,
'k_start': args.k_start,
'k_end': args.k_end,
'task': args.task,
'max_epochs': args.max_epochs,
'results_dir': args.results_dir,
'lr': args.lr,
'lr_factor': args.lr_factor,
'lr_patience': args.lr_patience,
'beta1': args.beta1,
'beta2': args.beta2,
'eps': args.eps,
'experiment': args.exp_code,
'reg': args.reg,
'label_frac': args.label_frac,
'bag_loss': args.bag_loss,
'seed': args.seed,
'model_type': args.model_type,
'model_size': args.model_size,
"drop_out": args.drop_out,
"use_early_stopping": args.early_stopping,
'weighted_sample': args.weighted_sample,
'opt': args.opt,
'graph_edge_distance': args.graph_edge_distance}
if args.model_type in ['clam_sb', 'clam_mb']:
settings.update({'bag_weight': args.bag_weight,
'inst_loss': args.inst_loss,
'B': args.B})
print('\nLoad Dataset')
if args.task == 'ovarian_5class':
args.n_classes=5
args.label_dict = {'high_grade':0,'low_grade':1,'clear_cell':2,'endometrioid':3,'mucinous':4}
elif args.task == 'ovarian_1vsall':
args.n_classes=2
args.label_dict = {'high_grade':0,'low_grade':1,'clear_cell':1,'endometrioid':1,'mucinous':1}
elif args.task =='treatment':
args.n_classes=2
args.label_dict = {'invalid':0,'effective':1}
elif args.task == 'nsclc':
args.n_classes=2
args.label_dict = {'luad':0,'lusc':1}
else:
raise NotImplementedError
dataset = Generic_MIL_Dataset(csv_path = args.csv_path,
data_dir = os.path.join(args.data_root_dir, args.features_folder),
data_dir_aug = os.path.join(args.data_root_dir, args.features_folder_aug),
small_data_dir = os.path.join(args.data_root_dir, args.small_features_folder),
max_patches_per_slide=args.max_patches_per_slide,
perturb_variance=args.perturb_variance,
number_of_augs=args.number_of_augs,
coords_path = args.coords_path,
small_coords_path = args.small_coords_path,
shuffle = False,
seed = args.seed,
print_info = True,
label_dict = args.label_dict,
patient_strat=False,
data_h5_dir=args.data_h5_dir,
data_slide_dir=args.data_slide_dir,
slide_ext=args.slide_ext,
pretrained=True,
custom_downsample=args.custom_downsample,
target_patch_size=args.target_patch_size,
model_architecture = args.model_architecture,
model_type = args.model_type,
batch_size = args.batch_size,
graph_edge_distance = args.graph_edge_distance,
offset = args.offset,
plot_graph = args.plot_graph,
ms_features = args.ms_features,
graph_path = args.graph_path,
ignore=[])
if not os.path.isdir(args.results_dir):
os.mkdir(args.results_dir)
args.results_dir = os.path.join(args.results_dir, str(args.exp_code) + '_s{}'.format(args.seed))
if not os.path.isdir(args.results_dir):
os.mkdir(args.results_dir)
if args.split_dir is None:
args.split_dir = os.path.join('splits', args.task+'_{}'.format(int(args.label_frac*100)))
else:
args.split_dir = os.path.join('splits', args.split_dir)
print('split_dir: ', args.split_dir)
assert os.path.isdir(args.split_dir)
settings.update({'split_dir': args.split_dir})
with open(args.results_dir + '/experiment_{}.txt'.format(args.exp_code), 'w') as f:
print(settings, file=f)
f.close()
print("################# Settings ###################")
for key, val in settings.items():
print("{}: {}".format(key, val))
if __name__ == "__main__":
#torch.multiprocessing.set_start_method('spawn')
if args.profile:
profiler = cProfile.Profile()
profiler.enable()
results = main()
print("max gpu mem usage:",torch.cuda.max_memory_allocated())
profiler.disable()
stats = pstats.Stats(profiler).sort_stats('cumtime')
stats.print_stats(args.profile_rows)
else:
results = main()
print("finished!")
print("end script")