-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathpreprocess.py
63 lines (46 loc) · 1.89 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from multiprocessing import Pool
import multiprocessing
import os
import argparse
import sys
import pickle
import os
import logging
from tqdm import tqdm
from data.argoverse.argo_csv_dataset import ArgoCSVDataset
from model.crat_pred import CratPred
# Make newly created directories readable, writable and descendible for everyone (chmod 777)
os.umask(0)
root_path = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, root_path)
log_dir = os.path.dirname(os.path.abspath(__file__))
logging.getLogger("pytorch_lightning").setLevel(logging.INFO)
parser = argparse.ArgumentParser()
parser = CratPred.init_args(parser)
parser.add_argument("--n_cpus", type=int, default=multiprocessing.cpu_count())
parser.add_argument("--chunksize", type=int, default=20)
def preprocess_dataset(dataset, n_cpus, chunksize):
"""Parallely preprocess a dataset to a pickle files
Args:
dataset: Dataset to be preprocessed
n_cpus: Number of CPUs to use
chunksize: Chunksize for parallelization
"""
with Pool(n_cpus) as p:
preprocessed = list(tqdm(p.imap(dataset.__getitem__, [
*range(len(dataset))], chunksize), total=len(dataset)))
os.makedirs(os.path.dirname(dataset.input_preprocessed), exist_ok=True)
with open(dataset.input_preprocessed, 'wb') as f:
pickle.dump(preprocessed, f)
def main():
args = parser.parse_args()
args.use_preprocessed = False
train_dataset = ArgoCSVDataset(
args.train_split, args.train_split_pre, args)
val_dataset = ArgoCSVDataset(args.val_split, args.val_split_pre, args)
test_dataset = ArgoCSVDataset(args.test_split, args.test_split_pre, args)
preprocess_dataset(train_dataset, args.n_cpus, args.chunksize)
preprocess_dataset(val_dataset, args.n_cpus, args.chunksize)
preprocess_dataset(test_dataset, args.n_cpus, args.chunksize)
if __name__ == "__main__":
main()