-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeep_NN_with_L_layers.py
306 lines (212 loc) · 9.26 KB
/
deep_NN_with_L_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
from PIL import Image
import numpy as np
import os
from sklearn.utils import shuffle
import matplotlib.pyplot as plt
from numpy import *
'''
step 1: make list of elements of file
list_img = os.listdir(file_addr)
step 2: resize all images from input folder and store in input_resize folder
for i in list_img:
im = Image.open(input_file_addr+'\\'+i)
im1 = im.resize((200,200))
im2 = im1.convert('RGB')
im2.save(input_resize_file_addr+'\\'+i,'JPEG')
step 3: flatten images to matrix(m,n_x)
X = np.array([np.array(Image.open(input_file_addr+'\\'+i)).flatten() for i in list_img],'f')
X = X.T
step 4: labelling the dataset
m = X.shape[1] #no. of images
m_t = X_t.shape[1]
Y = np.zeros((m,1),dtype=int)
Y_t = np.zeros((m_t,1),dtype=int)
Y[0:m] = 1
step 5: reshape Y to maintain the consistency
Y = Y.reshape((1,X.shape[1])).T
step 5: shuffle data (need to do it for better result)
X_train,Y_train = shuffle(X,Y, random_state=0)
step 6: standardize the data (not neccessary but good practice)
X_train = X_train/255 #255 is maximum possible value in image pixle
step 7: do all above steps for test data
X_test = ....
Y_test = ....
step 8: run the model function
n_h1 = 7 #number of nodes in layer
d = model(X_train, Y_train, X_test, Y_test,n_h1, num_iterations = 6000, learning_rate = 0.05,lambd = 0)
step 9: Print train/test Errors
Y_prediction_train = d["Y_prediction_train"]
Y_prediction_test = d["Y_prediction_test"]
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
step 10:draw cost vs iteration graph
plot_cost(cost)
'''
def sigmoid(Z):
A = 1./(1+np.exp(-Z))
cache = Z
return A,cache
def relu(Z):
A = np.maximum(0,Z)
cache = Z
return A, cache
def sigmoid_backward(dA, cache):
Z = cache
s = 1./(1+np.exp(-Z))
dZ = dA * s * (1-s)
return dZ
def relu_backward(dA, cache):
Z = cache
dZ = np.array(dA, copy=True) # just converting dz to a correct object.
# When z <= 0, you should set dz to 0 as well.
dZ[Z <= 0] = 0
assert (dZ.shape == Z.shape)
return dZ
def initialize_parameters(layer_dims):
np.random.seed(1)
parameters = {} # layer_dims -- python array (list) containing the dimensions of each layer in our network
L = len(layer_dims) # number of layers in the network
for l in range(1, L):
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1]) #*0.01
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
return parameters
def linear_forward(A, W, b):
Z = np.dot(W,A) + b
assert(Z.shape == (W.shape[0], A.shape[1]))
cache = (A, W, b)
return Z, cache
def linear_activation_forward(A_prev, W, b, activation):
if activation == "sigmoid":
# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = sigmoid(Z)
elif activation == "relu":
# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = relu(Z)
assert (A.shape == (W.shape[0], A_prev.shape[1]))
cache = (linear_cache, activation_cache)
return A, cache
def L_model_forward(X, parameters):
caches = []
A = X
L = len(parameters) // 2 # number of layers in the neural network
# Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
for l in range(1, L):
A_prev = A
A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], activation = "relu")
caches.append(cache)
# Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], activation = "sigmoid")
caches.append(cache)
assert(AL.shape == (1,X.shape[1]))
return AL, caches
def compute_cost(AL, Y):
m = Y.shape[1]
# Compute loss from aL and y.
#cost = (-1./m) * (np.dot(Y,np.log1p(AL).T) + np.dot(1-Y, np.log1p(1-AL).T))
#OR
cost = (-1./m)* np.sum(Y * np.log1p(AL) + (1-Y) * (np.log1p(1-AL)))
cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
assert(cost.shape == ())
return cost
def linear_backward(dZ, cache):
A_prev, W, b = cache
m = A_prev.shape[1]
dW = (1./m) * np.dot(dZ,A_prev.T) #g'(f(x)) =(dg/df)*(df/dx) -> chain rule
db = (1./m) * np.sum(dZ, axis = 1, keepdims = True)
dA_prev = np.dot(W.T,dZ)
assert (dA_prev.shape == A_prev.shape)
assert (dW.shape == W.shape)
assert (db.shape == b.shape)
return dA_prev, dW, db
def linear_activation_backward(dA, cache, activation):
linear_cache, activation_cache = cache
if activation == "relu":
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
elif activation == "sigmoid":
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
return dA_prev, dW, db
def linear_activation_backward(dA, cache, activation):
linear_cache, activation_cache = cache
if activation == "relu":
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
elif activation == "sigmoid":
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
return dA_prev, dW, db
def L_model_backward(AL, Y, caches):
grads = {}
L = len(caches) # the number of layers
m = AL.shape[1]
Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
# Initializing the backpropagation
dAL = - ((Y/AL) - ((1 - Y)/( 1 - AL)))
# Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
current_cache = caches[L-1]
grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = "sigmoid")
for l in reversed(range(L-1)):
# lth layer: (RELU -> LINEAR) gradients.
current_cache = caches[l]
dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 1)], current_cache, activation = "relu")
grads["dA" + str(l)] = dA_prev_temp
grads["dW" + str(l + 1)] = dW_temp
grads["db" + str(l + 1)] = db_temp
return grads
def update_parameters(parameters, grads, learning_rate):
L = len(parameters) // 2 # number of layers in the neural network
# Update rule for each parameter. Use a for loop.
for l in range(L):
parameters["W" + str(l+1)] -= learning_rate * grads["dW" + str(l+1)]
parameters["b" + str(l+1)] -= learning_rate * grads["db" + str(l+1)]
return parameters
def predict(X, parameters):
m = X.shape[1]
n = len(parameters) // 2 # number of layers in the neural network
p = np.zeros((1,m))
# Forward propagation
probas, caches = L_model_forward(X, parameters)
# convert probas to 0/1 predictions
for i in range(0, probas.shape[1]):
if probas[0,i] > 0.5:
p[0,i] = 1
else:
p[0,i] = 0
#print results
#print ("predictions: " + str(p))
#print ("true labels: " + str(y))
#print("Accuracy: " + str(np.sum((p == y)/m)))
return p
def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009
np.random.seed(1)
costs = [] # keep track of cost
# Parameters initialization
parameters = initialize_parameters(layers_dims)
# Loop (gradient descent)
for i in range(0, num_iterations):
# Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.
AL, caches = L_model_forward(X,parameters)
# Compute cost.
cost = compute_cost(AL,Y)
# Backward propagation.
grads = L_model_backward(AL, Y, caches)
# Update parameters.
parameters = update_parameters(parameters,grads,learning_rate)
# Print the cost every 100 training example
if print_cost and i % 50 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
if print_cost and i % 50 == 0:
costs.append(cost)
return parameters,costs
def plot_cost(costs):
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()