-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualize_3d.py
282 lines (242 loc) · 10.4 KB
/
visualize_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# %%
import json
import matplotlib.pyplot as plt
import cv2
from tqdm import tqdm
# %%
import pathlib
import numpy as np
from scipy.interpolate import RegularGridInterpolator
import pathlib
import h5py
# %%
class Ppm():
def __init__(self):
self.data = None
self.ijks = None
self.normals = None
self.ijk_interpolator = None
self.normal_interpolator = None
self.data_header = None
self.valid = False
self.error = "no error message set"
def createErrorPpm(err):
ppm = Ppm()
ppm.error = err
return ppm
no_data = (0.,0.,0.)
# lijk (layer ijk) is in layer's global coordinates
def layerIjksToScrollIjks(self, lijks):
print("litsi")
if self.data is None:
print("litsi no data")
return lijks
'''
li,lj,lk = lijk
if li < 0 or lj < 0:
return Ppm.no_data
if li >= self.width:
return Ppm.no_data
if lj >= self.height:
return Ppm.no_data
'''
# sijk = np.zeros((lijk.shape), dtype=lijk.dtype)
# sijks = self.ijk_interpolator(lijks[:,0:2])
ijs = lijks[:,(2,0)]
ks = lijks[:,1,np.newaxis]
sijks = self.ijk_interpolator(ijs)
norms = self.normal_interpolator(ijs)
print(lijks.shape, sijks.shape, norms.shape, ks.shape)
sijks += norms*(ks-32)
return sijks
def loadData(self):
if self.data is not None:
return
print("reading data from %s for %s"%(str(self.path), self.name))
fstr = str(self.path)
print("reading ppm data for", self.path)
if not self.path.exists():
err="ppm file %s does not exist"%fstr
print(err)
return Ppm.createErrorPpm(err)
try:
fd = self.path.open("rb")
except Exception as e:
err="Failed to open ppm file %s: %s"%(fstr, e)
print(err)
return Ppm.createErrorPpm(err)
try:
bdata = fd.read()
except Exception as e:
err="Failed to read ppm file %s: %s"%(fstr, e)
print(err)
return Ppm.createErrorPpm(err)
index = bdata.find(b'<>\n')
if index < 0:
err="Ppm file %s does not have a header"%fstr
print(err)
return Ppm.createErrorPpm(err)
bdata = bdata[index+3:]
lbd = len(bdata)
height = self.height
width = self.width
le = height*width*8*6
if lbd != le:
err="Ppm file %s expected %d bytes of data, got %d"%(fstr, le, lbd)
print(err)
return Ppm.createErrorPpm(err)
raw = np.frombuffer(bdata, dtype=np.float64)
self.data = np.reshape(raw, (height,width,6))
self.ijks = self.data[:,:,:3]
self.normals = self.data[:,:,3:]
print(self.ijks.shape, self.normals.shape)
# print(self.ijks[0,0,:],self.normals[0,0,:])
# print(self.ijks[3000,3000,:],self.normals[3000,3000,:])
ii = np.arange(height)
jj = np.arange(width)
self.ijk_interpolator = RegularGridInterpolator((ii, jj), self.ijks, fill_value=0., bounds_error=False)
self.normal_interpolator = RegularGridInterpolator((ii, jj), self.normals, fill_value=0., bounds_error=False)
# reads and loads the header of the ppm file
def loadPpm(filename):
fstr = str(filename)
print("reading ppm header for", filename)
if not filename.exists():
err="ppm file %s does not exist"%fstr
print(err)
return Ppm.createErrorPpm(err)
try:
fd = filename.open("rb")
except Exception as e:
err="Failed to open ppm file %s: %s"%(fstr, e)
print(err)
return Ppm.createErrorPpm(err)
try:
bstr = fd.read(200)
except Exception as e:
err="Failed to read ppm file %s: %s"%(fstr, e)
print(err)
return Ppm.createErrorPpm(err)
index = bstr.find(b'<>\n')
if index < 0:
err="Ppm file %s does not have a header"%fstr
print(err)
return Ppm.createErrorPpm(err)
hstr = bstr[:index+3].decode('utf-8')
lines = hstr.split('\n')
hdict = {}
for line in lines:
words = line.split()
if len(words) != 2:
continue
name = words[0]
value = words[1]
if name[-1] != ':':
continue
name = name[:-1]
hdict[name] = value
for name in ["width", "height"]:
if name not in hdict:
err="Ppm file %s missing \"%s\" in header"%(fstr, name)
print(err)
return Ppm.createErrorPpm(err)
try:
width = int(hdict["width"])
except Exception as e:
err="Ppm file %s could not parse width value \"%s\" in header"%(fstr, hdict["width"])
print(err)
return Ppm.createErrorPpm(err)
try:
height = int(hdict["height"])
except Exception as e:
err="Ppm file %s could not parse height value \"%s\" in header"%(fstr, hdict["height"])
print(err)
return Ppm.createErrorPpm(err)
expected = {
"dim": "6",
"ordered": "true",
"type": "double",
"version": "1",
}
for name, value in expected.items():
if name not in hdict:
err = "Ppm file %s missing \"%s\" from header"%(fstr, name)
print(err)
return Ppm.createErrorPpm(err)
if hdict[name] != expected[name]:
err = "Ppm file %s expected value of \"%s\" for \"%s\" in header; got %s"%(fstr, expected[name], name, hdict[name])
print(err)
return Ppm.createErrorPpm(err)
ppm = Ppm()
ppm.valid = True
ppm.height = height
ppm.width = width
ppm.path = filename
ppm.name = filename.stem
print("created ppm %s width %d height %d"%(ppm.name, ppm.width, ppm.height))
return ppm
# %%
import zarr
from numcodecs import blosc
blosc.set_nthreads(64)
z1 = zarr.open('3d_predictions_uint8_compressed.zarr', mode='r')
import os
scroll_id = "Scroll1.volpkg"
# for segment in sorted(os.listdir(f"/data/scroll_data/dl.ash2txt.org/full-scrolls/{scroll_id}/paths")):
for segment in ["20231012184424"]:
try:
if os.path.exists(f"/data/flattened_3d_predictions_all_labels/{segment}.jpg"):
continue
ppm = Ppm.loadPpm(pathlib.Path(f"/data/scroll_data/dl.ash2txt.org/full-scrolls/{scroll_id}/paths/{segment}/{segment}.ppm"))
ppm.loadData()
# predictions = cv2.imread(f"/home/ryanc/kaggle/gp_segments_tta/{segment}_predictions.png", 0)
labeled_boxes = [[0, 0, -1, -1]]
group_size = 256
for box in labeled_boxes:
ijks = ppm.ijks[box[1]:box[3], box[0]:box[2]]
new_predictions = np.zeros_like(ijks, dtype=np.float64)[:, :, 0]
new_counts = np.zeros_like(ijks, dtype=np.float64)[:, :, 0]
# sub_predictions = predictions[box[1]:box[3], box[0]:box[2]]
normals = ppm.normals[box[1]:box[3], box[0]:box[2]]
pbar = tqdm(range(0, ijks.shape[0], group_size))
for y in pbar:
for x in range(0, ijks.shape[1], group_size):
try:
lower_scroll_cords = ijks[y:y+group_size, x:x+group_size] + (((32+16)-(65//2)) * normals[y:y+group_size, x:x+group_size])
upper_scroll_cords = ijks[y:y+group_size, x:x+group_size] + (((32-16)-(65//2)) * normals[y:y+group_size, x:x+group_size])
min_coords = np.floor(np.stack([lower_scroll_cords, upper_scroll_cords], axis = 0).min(0)).astype(int)
max_coords = np.ceil(np.stack([lower_scroll_cords, upper_scroll_cords], axis = 0).max(0)).astype(int)
if upper_scroll_cords.max() > 0. and lower_scroll_cords.min() > 0.:
# print(min_coords[:, :, 1].min(),max_coords[:, :, 1].max(),
# min_coords[:, :, 0].min(),max_coords[:, :, 0].max(),
# min_coords[:, :, 2].min(),max_coords[:, :, 2].max())
sub_volume = z1[min_coords[:, :, 1].min():max_coords[:, :, 1].max(),
min_coords[:, :, 0].min():max_coords[:, :, 0].max(),
min_coords[:, :, 2].min():max_coords[:, :, 2].max()]
# print(sub_volume.dtype, sub_volume.max(), sub_volume.min())
# print(sub_volume.shape)
# print(min_coords.shape, min_coords.min(), max_coords.shape, max_coords.max())
offset_y = min_coords[:, :, 1].min()
offset_x = min_coords[:, :, 0].min()
offset_z = min_coords[:, :, 2].min()
for sub_y in range(0, group_size):
for sub_x in range(0, group_size):
# print(sub_volume[min_coords[sub_y, sub_x, 1]-offset_y:max_coords[sub_y, sub_x, 1]-offset_y,
# min_coords[sub_y, sub_x, 0]-offset_x:max_coords[sub_y, sub_x, 0]-offset_x,
# min_coords[sub_y, sub_x, 2]-offset_z:max_coords[sub_y, sub_x, 2]-offset_z].shape)
new_predictions[y+sub_y, x+sub_x] += sub_volume[min_coords[sub_y, sub_x, 1]-offset_y:max_coords[sub_y, sub_x, 1]-offset_y,
min_coords[sub_y, sub_x, 0]-offset_x:max_coords[sub_y, sub_x, 0]-offset_x,
min_coords[sub_y, sub_x, 2]-offset_z:max_coords[sub_y, sub_x, 2]-offset_z].mean()
new_counts[y+sub_y, x+sub_x] += 1
except:
print("failed row", x, y)
cv2.imwrite(f"/data/flattened_3d_predictions_all_labels/{scroll_id}_{segment}.jpg", (new_predictions/new_counts).astype(np.uint8))
except:
print("failed unroll")
# %%
plt.imshow((new_predictions/new_counts).astype(np.uint8))
# %%
new_predictions.max()
# %%
# %%
new_predictions.min()
# %%