diff --git a/src/librustc/mir/mod.rs b/src/librustc/mir/mod.rs index 74beb1b1bc7de..310228838e0ad 100644 --- a/src/librustc/mir/mod.rs +++ b/src/librustc/mir/mod.rs @@ -9,6 +9,7 @@ use crate::hir::def_id::DefId; use crate::hir::{self, InlineAsm as HirInlineAsm}; use crate::mir::interpret::{ConstValue, InterpError, Scalar}; use crate::mir::visit::MirVisitable; +use rustc_data_structures::bit_set::BitMatrix; use rustc_data_structures::fx::FxHashSet; use rustc_data_structures::graph::dominators::{dominators, Dominators}; use rustc_data_structures::graph::{self, GraphPredecessors, GraphSuccessors}; @@ -2997,6 +2998,11 @@ pub struct GeneratorLayout<'tcx> { /// be stored in multiple variants. pub variant_fields: IndexVec>, + /// Which saved locals are storage-live at the same time. Locals that do not + /// have conflicts with each other are allowed to overlap in the computed + /// layout. + pub storage_conflicts: BitMatrix, + /// Names and scopes of all the stored generator locals. /// NOTE(tmandry) This is *strictly* a temporary hack for codegen /// debuginfo generation, and will be removed at some point. @@ -3193,6 +3199,7 @@ BraceStructTypeFoldableImpl! { impl<'tcx> TypeFoldable<'tcx> for GeneratorLayout<'tcx> { field_tys, variant_fields, + storage_conflicts, __local_debuginfo_codegen_only_do_not_use, } } @@ -3572,6 +3579,15 @@ impl<'tcx> TypeFoldable<'tcx> for GeneratorSavedLocal { } } +impl<'tcx, R: Idx, C: Idx> TypeFoldable<'tcx> for BitMatrix { + fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, _: &mut F) -> Self { + self.clone() + } + fn super_visit_with>(&self, _: &mut V) -> bool { + false + } +} + impl<'tcx> TypeFoldable<'tcx> for Constant<'tcx> { fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self { Constant { diff --git a/src/librustc/ty/layout.rs b/src/librustc/ty/layout.rs index 8e2c3dd3d8ad9..2cf61d7b3f529 100644 --- a/src/librustc/ty/layout.rs +++ b/src/librustc/ty/layout.rs @@ -14,6 +14,10 @@ use std::ops::Bound; use crate::hir; use crate::ich::StableHashingContext; +use crate::mir::{GeneratorLayout, GeneratorSavedLocal}; +use crate::ty::GeneratorSubsts; +use crate::ty::subst::Subst; +use rustc_data_structures::bit_set::BitSet; use rustc_data_structures::indexed_vec::{IndexVec, Idx}; use rustc_data_structures::stable_hasher::{HashStable, StableHasher, StableHasherResult}; @@ -212,260 +216,268 @@ pub struct LayoutCx<'tcx, C> { pub param_env: ty::ParamEnv<'tcx>, } +#[derive(Copy, Clone, Debug)] +enum StructKind { + /// A tuple, closure, or univariant which cannot be coerced to unsized. + AlwaysSized, + /// A univariant, the last field of which may be coerced to unsized. + MaybeUnsized, + /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag). + Prefixed(Size, Align), +} + impl<'a, 'tcx> LayoutCx<'tcx, TyCtxt<'a, 'tcx, 'tcx>> { - fn layout_raw_uncached(&self, ty: Ty<'tcx>) -> Result<&'tcx LayoutDetails, LayoutError<'tcx>> { - let tcx = self.tcx; - let param_env = self.param_env; + fn scalar_pair(&self, a: Scalar, b: Scalar) -> LayoutDetails { let dl = self.data_layout(); - let scalar_unit = |value: Primitive| { - let bits = value.size(dl).bits(); - assert!(bits <= 128); - Scalar { - value, - valid_range: 0..=(!0 >> (128 - bits)) - } - }; - let scalar = |value: Primitive| { - tcx.intern_layout(LayoutDetails::scalar(self, scalar_unit(value))) - }; - let scalar_pair = |a: Scalar, b: Scalar| { - let b_align = b.value.align(dl); - let align = a.value.align(dl).max(b_align).max(dl.aggregate_align); - let b_offset = a.value.size(dl).align_to(b_align.abi); - let size = (b_offset + b.value.size(dl)).align_to(align.abi); - LayoutDetails { - variants: Variants::Single { index: VariantIdx::new(0) }, - fields: FieldPlacement::Arbitrary { - offsets: vec![Size::ZERO, b_offset], - memory_index: vec![0, 1] - }, - abi: Abi::ScalarPair(a, b), - align, - size - } - }; - - #[derive(Copy, Clone, Debug)] - enum StructKind { - /// A tuple, closure, or univariant which cannot be coerced to unsized. - AlwaysSized, - /// A univariant, the last field of which may be coerced to unsized. - MaybeUnsized, - /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag). - Prefixed(Size, Align), + let b_align = b.value.align(dl); + let align = a.value.align(dl).max(b_align).max(dl.aggregate_align); + let b_offset = a.value.size(dl).align_to(b_align.abi); + let size = (b_offset + b.value.size(dl)).align_to(align.abi); + LayoutDetails { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldPlacement::Arbitrary { + offsets: vec![Size::ZERO, b_offset], + memory_index: vec![0, 1] + }, + abi: Abi::ScalarPair(a, b), + align, + size } + } - let univariant_uninterned = |fields: &[TyLayout<'_>], repr: &ReprOptions, kind| { - let packed = repr.packed(); - if packed && repr.align > 0 { - bug!("struct cannot be packed and aligned"); - } + fn univariant_uninterned(&self, + ty: Ty<'tcx>, + fields: &[TyLayout<'_>], + repr: &ReprOptions, + kind: StructKind) -> Result> { + let dl = self.data_layout(); + let packed = repr.packed(); + if packed && repr.align > 0 { + bug!("struct cannot be packed and aligned"); + } - let pack = Align::from_bytes(repr.pack as u64).unwrap(); + let pack = Align::from_bytes(repr.pack as u64).unwrap(); - let mut align = if packed { - dl.i8_align - } else { - dl.aggregate_align - }; + let mut align = if packed { + dl.i8_align + } else { + dl.aggregate_align + }; - let mut sized = true; - let mut offsets = vec![Size::ZERO; fields.len()]; - let mut inverse_memory_index: Vec = (0..fields.len() as u32).collect(); + let mut sized = true; + let mut offsets = vec![Size::ZERO; fields.len()]; + let mut inverse_memory_index: Vec = (0..fields.len() as u32).collect(); - let mut optimize = !repr.inhibit_struct_field_reordering_opt(); - if let StructKind::Prefixed(_, align) = kind { - optimize &= align.bytes() == 1; - } + let mut optimize = !repr.inhibit_struct_field_reordering_opt(); + if let StructKind::Prefixed(_, align) = kind { + optimize &= align.bytes() == 1; + } - if optimize { - let end = if let StructKind::MaybeUnsized = kind { - fields.len() - 1 - } else { - fields.len() - }; - let optimizing = &mut inverse_memory_index[..end]; - let field_align = |f: &TyLayout<'_>| { - if packed { f.align.abi.min(pack) } else { f.align.abi } - }; - match kind { - StructKind::AlwaysSized | - StructKind::MaybeUnsized => { - optimizing.sort_by_key(|&x| { - // Place ZSTs first to avoid "interesting offsets", - // especially with only one or two non-ZST fields. - let f = &fields[x as usize]; - (!f.is_zst(), cmp::Reverse(field_align(f))) - }); - } - StructKind::Prefixed(..) => { - optimizing.sort_by_key(|&x| field_align(&fields[x as usize])); - } + if optimize { + let end = if let StructKind::MaybeUnsized = kind { + fields.len() - 1 + } else { + fields.len() + }; + let optimizing = &mut inverse_memory_index[..end]; + let field_align = |f: &TyLayout<'_>| { + if packed { f.align.abi.min(pack) } else { f.align.abi } + }; + match kind { + StructKind::AlwaysSized | + StructKind::MaybeUnsized => { + optimizing.sort_by_key(|&x| { + // Place ZSTs first to avoid "interesting offsets", + // especially with only one or two non-ZST fields. + let f = &fields[x as usize]; + (!f.is_zst(), cmp::Reverse(field_align(f))) + }); + } + StructKind::Prefixed(..) => { + optimizing.sort_by_key(|&x| field_align(&fields[x as usize])); } } + } - // inverse_memory_index holds field indices by increasing memory offset. - // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5. - // We now write field offsets to the corresponding offset slot; - // field 5 with offset 0 puts 0 in offsets[5]. - // At the bottom of this function, we use inverse_memory_index to produce memory_index. + // inverse_memory_index holds field indices by increasing memory offset. + // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5. + // We now write field offsets to the corresponding offset slot; + // field 5 with offset 0 puts 0 in offsets[5]. + // At the bottom of this function, we use inverse_memory_index to produce memory_index. - let mut offset = Size::ZERO; + let mut offset = Size::ZERO; - if let StructKind::Prefixed(prefix_size, prefix_align) = kind { - let prefix_align = if packed { - prefix_align.min(pack) - } else { - prefix_align - }; - align = align.max(AbiAndPrefAlign::new(prefix_align)); - offset = prefix_size.align_to(prefix_align); + if let StructKind::Prefixed(prefix_size, prefix_align) = kind { + let prefix_align = if packed { + prefix_align.min(pack) + } else { + prefix_align + }; + align = align.max(AbiAndPrefAlign::new(prefix_align)); + offset = prefix_size.align_to(prefix_align); + } + + for &i in &inverse_memory_index { + let field = fields[i as usize]; + if !sized { + bug!("univariant: field #{} of `{}` comes after unsized field", + offsets.len(), ty); } - for &i in &inverse_memory_index { - let field = fields[i as usize]; - if !sized { - bug!("univariant: field #{} of `{}` comes after unsized field", - offsets.len(), ty); - } + if field.is_unsized() { + sized = false; + } - if field.is_unsized() { - sized = false; - } + // Invariant: offset < dl.obj_size_bound() <= 1<<61 + let field_align = if packed { + field.align.min(AbiAndPrefAlign::new(pack)) + } else { + field.align + }; + offset = offset.align_to(field_align.abi); + align = align.max(field_align); - // Invariant: offset < dl.obj_size_bound() <= 1<<61 - let field_align = if packed { - field.align.min(AbiAndPrefAlign::new(pack)) - } else { - field.align - }; - offset = offset.align_to(field_align.abi); - align = align.max(field_align); + debug!("univariant offset: {:?} field: {:#?}", offset, field); + offsets[i as usize] = offset; - debug!("univariant offset: {:?} field: {:#?}", offset, field); - offsets[i as usize] = offset; + offset = offset.checked_add(field.size, dl) + .ok_or(LayoutError::SizeOverflow(ty))?; + } - offset = offset.checked_add(field.size, dl) - .ok_or(LayoutError::SizeOverflow(ty))?; - } + if repr.align > 0 { + let repr_align = repr.align as u64; + align = align.max(AbiAndPrefAlign::new(Align::from_bytes(repr_align).unwrap())); + debug!("univariant repr_align: {:?}", repr_align); + } - if repr.align > 0 { - let repr_align = repr.align as u64; - align = align.max(AbiAndPrefAlign::new(Align::from_bytes(repr_align).unwrap())); - debug!("univariant repr_align: {:?}", repr_align); - } + debug!("univariant min_size: {:?}", offset); + let min_size = offset; - debug!("univariant min_size: {:?}", offset); - let min_size = offset; + // As stated above, inverse_memory_index holds field indices by increasing offset. + // This makes it an already-sorted view of the offsets vec. + // To invert it, consider: + // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0. + // Field 5 would be the first element, so memory_index is i: + // Note: if we didn't optimize, it's already right. - // As stated above, inverse_memory_index holds field indices by increasing offset. - // This makes it an already-sorted view of the offsets vec. - // To invert it, consider: - // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0. - // Field 5 would be the first element, so memory_index is i: - // Note: if we didn't optimize, it's already right. + let mut memory_index; + if optimize { + memory_index = vec![0; inverse_memory_index.len()]; - let mut memory_index; - if optimize { - memory_index = vec![0; inverse_memory_index.len()]; + for i in 0..inverse_memory_index.len() { + memory_index[inverse_memory_index[i] as usize] = i as u32; + } + } else { + memory_index = inverse_memory_index; + } - for i in 0..inverse_memory_index.len() { - memory_index[inverse_memory_index[i] as usize] = i as u32; - } - } else { - memory_index = inverse_memory_index; - } - - let size = min_size.align_to(align.abi); - let mut abi = Abi::Aggregate { sized }; - - // Unpack newtype ABIs and find scalar pairs. - if sized && size.bytes() > 0 { - // All other fields must be ZSTs, and we need them to all start at 0. - let mut zst_offsets = - offsets.iter().enumerate().filter(|&(i, _)| fields[i].is_zst()); - if zst_offsets.all(|(_, o)| o.bytes() == 0) { - let mut non_zst_fields = - fields.iter().enumerate().filter(|&(_, f)| !f.is_zst()); - - match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) { - // We have exactly one non-ZST field. - (Some((i, field)), None, None) => { - // Field fills the struct and it has a scalar or scalar pair ABI. - if offsets[i].bytes() == 0 && - align.abi == field.align.abi && - size == field.size { - match field.abi { - // For plain scalars, or vectors of them, we can't unpack - // newtypes for `#[repr(C)]`, as that affects C ABIs. - Abi::Scalar(_) | Abi::Vector { .. } if optimize => { - abi = field.abi.clone(); - } - // But scalar pairs are Rust-specific and get - // treated as aggregates by C ABIs anyway. - Abi::ScalarPair(..) => { - abi = field.abi.clone(); - } - _ => {} + let size = min_size.align_to(align.abi); + let mut abi = Abi::Aggregate { sized }; + + // Unpack newtype ABIs and find scalar pairs. + if sized && size.bytes() > 0 { + // All other fields must be ZSTs, and we need them to all start at 0. + let mut zst_offsets = + offsets.iter().enumerate().filter(|&(i, _)| fields[i].is_zst()); + if zst_offsets.all(|(_, o)| o.bytes() == 0) { + let mut non_zst_fields = + fields.iter().enumerate().filter(|&(_, f)| !f.is_zst()); + + match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) { + // We have exactly one non-ZST field. + (Some((i, field)), None, None) => { + // Field fills the struct and it has a scalar or scalar pair ABI. + if offsets[i].bytes() == 0 && + align.abi == field.align.abi && + size == field.size { + match field.abi { + // For plain scalars, or vectors of them, we can't unpack + // newtypes for `#[repr(C)]`, as that affects C ABIs. + Abi::Scalar(_) | Abi::Vector { .. } if optimize => { + abi = field.abi.clone(); } + // But scalar pairs are Rust-specific and get + // treated as aggregates by C ABIs anyway. + Abi::ScalarPair(..) => { + abi = field.abi.clone(); + } + _ => {} } } + } - // Two non-ZST fields, and they're both scalars. - (Some((i, &TyLayout { - details: &LayoutDetails { abi: Abi::Scalar(ref a), .. }, .. - })), Some((j, &TyLayout { - details: &LayoutDetails { abi: Abi::Scalar(ref b), .. }, .. - })), None) => { - // Order by the memory placement, not source order. - let ((i, a), (j, b)) = if offsets[i] < offsets[j] { - ((i, a), (j, b)) - } else { - ((j, b), (i, a)) - }; - let pair = scalar_pair(a.clone(), b.clone()); - let pair_offsets = match pair.fields { - FieldPlacement::Arbitrary { - ref offsets, - ref memory_index - } => { - assert_eq!(memory_index, &[0, 1]); - offsets - } - _ => bug!() - }; - if offsets[i] == pair_offsets[0] && - offsets[j] == pair_offsets[1] && - align == pair.align && - size == pair.size { - // We can use `ScalarPair` only when it matches our - // already computed layout (including `#[repr(C)]`). - abi = pair.abi; + // Two non-ZST fields, and they're both scalars. + (Some((i, &TyLayout { + details: &LayoutDetails { abi: Abi::Scalar(ref a), .. }, .. + })), Some((j, &TyLayout { + details: &LayoutDetails { abi: Abi::Scalar(ref b), .. }, .. + })), None) => { + // Order by the memory placement, not source order. + let ((i, a), (j, b)) = if offsets[i] < offsets[j] { + ((i, a), (j, b)) + } else { + ((j, b), (i, a)) + }; + let pair = self.scalar_pair(a.clone(), b.clone()); + let pair_offsets = match pair.fields { + FieldPlacement::Arbitrary { + ref offsets, + ref memory_index + } => { + assert_eq!(memory_index, &[0, 1]); + offsets } + _ => bug!() + }; + if offsets[i] == pair_offsets[0] && + offsets[j] == pair_offsets[1] && + align == pair.align && + size == pair.size { + // We can use `ScalarPair` only when it matches our + // already computed layout (including `#[repr(C)]`). + abi = pair.abi; } - - _ => {} } + + _ => {} } } + } - if sized && fields.iter().any(|f| f.abi.is_uninhabited()) { - abi = Abi::Uninhabited; - } + if sized && fields.iter().any(|f| f.abi.is_uninhabited()) { + abi = Abi::Uninhabited; + } - Ok(LayoutDetails { - variants: Variants::Single { index: VariantIdx::new(0) }, - fields: FieldPlacement::Arbitrary { - offsets, - memory_index - }, - abi, - align, - size - }) + Ok(LayoutDetails { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldPlacement::Arbitrary { + offsets, + memory_index + }, + abi, + align, + size + }) + } + + fn layout_raw_uncached(&self, ty: Ty<'tcx>) -> Result<&'tcx LayoutDetails, LayoutError<'tcx>> { + let tcx = self.tcx; + let param_env = self.param_env; + let dl = self.data_layout(); + let scalar_unit = |value: Primitive| { + let bits = value.size(dl).bits(); + assert!(bits <= 128); + Scalar { + value, + valid_range: 0..=(!0 >> (128 - bits)) + } + }; + let scalar = |value: Primitive| { + tcx.intern_layout(LayoutDetails::scalar(self, scalar_unit(value))) }; + let univariant = |fields: &[TyLayout<'_>], repr: &ReprOptions, kind| { - Ok(tcx.intern_layout(univariant_uninterned(fields, repr, kind)?)) + Ok(tcx.intern_layout(self.univariant_uninterned(ty, fields, repr, kind)?)) }; debug_assert!(!ty.has_infer_types()); @@ -537,7 +549,7 @@ impl<'a, 'tcx> LayoutCx<'tcx, TyCtxt<'a, 'tcx, 'tcx>> { }; // Effectively a (ptr, meta) tuple. - tcx.intern_layout(scalar_pair(data_ptr, metadata)) + tcx.intern_layout(self.scalar_pair(data_ptr, metadata)) } // Arrays and slices. @@ -602,7 +614,7 @@ impl<'a, 'tcx> LayoutCx<'tcx, TyCtxt<'a, 'tcx, 'tcx>> { univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)? } ty::Dynamic(..) | ty::Foreign(..) => { - let mut unit = univariant_uninterned(&[], &ReprOptions::default(), + let mut unit = self.univariant_uninterned(ty, &[], &ReprOptions::default(), StructKind::AlwaysSized)?; match unit.abi { Abi::Aggregate { ref mut sized } => *sized = false, @@ -611,64 +623,7 @@ impl<'a, 'tcx> LayoutCx<'tcx, TyCtxt<'a, 'tcx, 'tcx>> { tcx.intern_layout(unit) } - ty::Generator(def_id, ref substs, _) => { - // FIXME(tmandry): For fields that are repeated in multiple - // variants in the GeneratorLayout, we need code to ensure that - // the offset of these fields never change. Right now this is - // not an issue since every variant has every field, but once we - // optimize this we have to be more careful. - - let discr_index = substs.prefix_tys(def_id, tcx).count(); - let prefix_tys = substs.prefix_tys(def_id, tcx) - .chain(iter::once(substs.discr_ty(tcx))); - let prefix = univariant_uninterned( - &prefix_tys.map(|ty| self.layout_of(ty)).collect::, _>>()?, - &ReprOptions::default(), - StructKind::AlwaysSized)?; - - let mut size = prefix.size; - let mut align = prefix.align; - let variants_tys = substs.state_tys(def_id, tcx); - let variants = variants_tys.enumerate().map(|(i, variant_tys)| { - let mut variant = univariant_uninterned( - &variant_tys.map(|ty| self.layout_of(ty)).collect::, _>>()?, - &ReprOptions::default(), - StructKind::Prefixed(prefix.size, prefix.align.abi))?; - - variant.variants = Variants::Single { index: VariantIdx::new(i) }; - - size = size.max(variant.size); - align = align.max(variant.align); - - Ok(variant) - }).collect::, _>>()?; - - let abi = if prefix.abi.is_uninhabited() || - variants.iter().all(|v| v.abi.is_uninhabited()) { - Abi::Uninhabited - } else { - Abi::Aggregate { sized: true } - }; - let discr = match &self.layout_of(substs.discr_ty(tcx))?.abi { - Abi::Scalar(s) => s.clone(), - _ => bug!(), - }; - - let layout = tcx.intern_layout(LayoutDetails { - variants: Variants::Multiple { - discr, - discr_kind: DiscriminantKind::Tag, - discr_index, - variants, - }, - fields: prefix.fields, - abi, - size, - align, - }); - debug!("generator layout ({:?}): {:#?}", ty, layout); - layout - } + ty::Generator(def_id, substs, _) => self.generator_layout(ty, def_id, &substs)?, ty::Closure(def_id, ref substs) => { let tys = substs.upvar_tys(def_id, tcx); @@ -853,7 +808,7 @@ impl<'a, 'tcx> LayoutCx<'tcx, TyCtxt<'a, 'tcx, 'tcx>> { else { StructKind::AlwaysSized } }; - let mut st = univariant_uninterned(&variants[v], &def.repr, kind)?; + let mut st = self.univariant_uninterned(ty, &variants[v], &def.repr, kind)?; st.variants = Variants::Single { index: v }; let (start, end) = self.tcx.layout_scalar_valid_range(def.did); match st.abi { @@ -932,7 +887,7 @@ impl<'a, 'tcx> LayoutCx<'tcx, TyCtxt<'a, 'tcx, 'tcx>> { let mut align = dl.aggregate_align; let st = variants.iter_enumerated().map(|(j, v)| { - let mut st = univariant_uninterned(v, + let mut st = self.univariant_uninterned(ty, v, &def.repr, StructKind::AlwaysSized)?; st.variants = Variants::Single { index: j }; @@ -1040,7 +995,7 @@ impl<'a, 'tcx> LayoutCx<'tcx, TyCtxt<'a, 'tcx, 'tcx>> { // Create the set of structs that represent each variant. let mut layout_variants = variants.iter_enumerated().map(|(i, field_layouts)| { - let mut st = univariant_uninterned(&field_layouts, + let mut st = self.univariant_uninterned(ty, &field_layouts, &def.repr, StructKind::Prefixed(min_ity.size(), prefix_align))?; st.variants = Variants::Single { index: i }; // Find the first field we can't move later @@ -1172,7 +1127,7 @@ impl<'a, 'tcx> LayoutCx<'tcx, TyCtxt<'a, 'tcx, 'tcx>> { } } if let Some((prim, offset)) = common_prim { - let pair = scalar_pair(tag.clone(), scalar_unit(prim)); + let pair = self.scalar_pair(tag.clone(), scalar_unit(prim)); let pair_offsets = match pair.fields { FieldPlacement::Arbitrary { ref offsets, @@ -1237,7 +1192,259 @@ impl<'a, 'tcx> LayoutCx<'tcx, TyCtxt<'a, 'tcx, 'tcx>> { } }) } +} +/// Overlap eligibility and variant assignment for each GeneratorSavedLocal. +#[derive(Clone, Debug, PartialEq)] +enum SavedLocalEligibility { + Unassigned, + Assigned(VariantIdx), + // FIXME: Use newtype_index so we aren't wasting bytes + Ineligible(Option), +} + +// When laying out generators, we divide our saved local fields into two +// categories: overlap-eligible and overlap-ineligible. +// +// Those fields which are ineligible for overlap go in a "prefix" at the +// beginning of the layout, and always have space reserved for them. +// +// Overlap-eligible fields are only assigned to one variant, so we lay +// those fields out for each variant and put them right after the +// prefix. +// +// Finally, in the layout details, we point to the fields from the +// variants they are assigned to. It is possible for some fields to be +// included in multiple variants. No field ever "moves around" in the +// layout; its offset is always the same. +// +// Also included in the layout are the upvars and the discriminant. +// These are included as fields on the "outer" layout; they are not part +// of any variant. +impl<'a, 'tcx> LayoutCx<'tcx, TyCtxt<'a, 'tcx, 'tcx>> { + /// Compute the eligibility and assignment of each local. + fn generator_saved_local_eligibility(&self, info: &GeneratorLayout<'tcx>) + -> (BitSet, IndexVec) { + use SavedLocalEligibility::*; + + let mut assignments: IndexVec = + IndexVec::from_elem_n(Unassigned, info.field_tys.len()); + + // The saved locals not eligible for overlap. These will get + // "promoted" to the prefix of our generator. + let mut ineligible_locals = BitSet::new_empty(info.field_tys.len()); + + // Figure out which of our saved locals are fields in only + // one variant. The rest are deemed ineligible for overlap. + for (variant_index, fields) in info.variant_fields.iter_enumerated() { + for local in fields { + match assignments[*local] { + Unassigned => { + assignments[*local] = Assigned(variant_index); + } + Assigned(idx) => { + // We've already seen this local at another suspension + // point, so it is no longer a candidate. + trace!("removing local {:?} in >1 variant ({:?}, {:?})", + local, variant_index, idx); + ineligible_locals.insert(*local); + assignments[*local] = Ineligible(None); + } + Ineligible(_) => {}, + } + } + } + + // Next, check every pair of eligible locals to see if they + // conflict. + for local_a in info.storage_conflicts.rows() { + let conflicts_a = info.storage_conflicts.count(local_a); + if ineligible_locals.contains(local_a) { + continue; + } + + for local_b in info.storage_conflicts.iter(local_a) { + // local_a and local_b are storage live at the same time, therefore they + // cannot overlap in the generator layout. The only way to guarantee + // this is if they are in the same variant, or one is ineligible + // (which means it is stored in every variant). + if ineligible_locals.contains(local_b) || + assignments[local_a] == assignments[local_b] + { + continue; + } + + // If they conflict, we will choose one to make ineligible. + // This is not always optimal; it's just a greedy heuristic that + // seems to produce good results most of the time. + let conflicts_b = info.storage_conflicts.count(local_b); + let (remove, other) = if conflicts_a > conflicts_b { + (local_a, local_b) + } else { + (local_b, local_a) + }; + ineligible_locals.insert(remove); + assignments[remove] = Ineligible(None); + trace!("removing local {:?} due to conflict with {:?}", remove, other); + } + } + + // Write down the order of our locals that will be promoted to the prefix. + { + let mut idx = 0u32; + for local in ineligible_locals.iter() { + assignments[local] = Ineligible(Some(idx)); + idx += 1; + } + } + debug!("generator saved local assignments: {:?}", assignments); + + (ineligible_locals, assignments) + } + + /// Compute the full generator layout. + fn generator_layout( + &self, + ty: Ty<'tcx>, + def_id: hir::def_id::DefId, + substs: &GeneratorSubsts<'tcx>, + ) -> Result<&'tcx LayoutDetails, LayoutError<'tcx>> { + use SavedLocalEligibility::*; + let tcx = self.tcx; + let recompute_memory_index = |offsets: &[Size]| -> Vec { + debug!("recompute_memory_index({:?})", offsets); + let mut inverse_index = (0..offsets.len() as u32).collect::>(); + inverse_index.sort_unstable_by_key(|i| offsets[*i as usize]); + + let mut index = vec![0; offsets.len()]; + for i in 0..index.len() { + index[inverse_index[i] as usize] = i as u32; + } + debug!("recompute_memory_index() => {:?}", index); + index + }; + let subst_field = |ty: Ty<'tcx>| { ty.subst(tcx, substs.substs) }; + + let info = tcx.generator_layout(def_id); + let (ineligible_locals, assignments) = self.generator_saved_local_eligibility(&info); + + // Build a prefix layout, including "promoting" all ineligible + // locals as part of the prefix. We compute the layout of all of + // these fields at once to get optimal packing. + let discr_index = substs.prefix_tys(def_id, tcx).count(); + let promoted_tys = + ineligible_locals.iter().map(|local| subst_field(info.field_tys[local])); + let prefix_tys = substs.prefix_tys(def_id, tcx) + .chain(iter::once(substs.discr_ty(tcx))) + .chain(promoted_tys); + let prefix = self.univariant_uninterned( + ty, + &prefix_tys.map(|ty| self.layout_of(ty)).collect::, _>>()?, + &ReprOptions::default(), + StructKind::AlwaysSized)?; + let (prefix_size, prefix_align) = (prefix.size, prefix.align); + + // Split the prefix layout into the "outer" fields (upvars and + // discriminant) and the "promoted" fields. Promoted fields will + // get included in each variant that requested them in + // GeneratorLayout. + debug!("prefix = {:#?}", prefix); + let (outer_fields, promoted_offsets) = match prefix.fields { + FieldPlacement::Arbitrary { mut offsets, .. } => { + let offsets_b = offsets.split_off(discr_index + 1); + let offsets_a = offsets; + + let memory_index = recompute_memory_index(&offsets_a); + let outer_fields = FieldPlacement::Arbitrary { offsets: offsets_a, memory_index }; + (outer_fields, offsets_b) + } + _ => bug!(), + }; + + let mut size = prefix.size; + let mut align = prefix.align; + let variants = info.variant_fields.iter_enumerated().map(|(index, variant_fields)| { + // Only include overlap-eligible fields when we compute our variant layout. + let variant_only_tys = variant_fields + .iter() + .filter(|local| { + match assignments[**local] { + Unassigned => bug!(), + Assigned(v) if v == index => true, + Assigned(_) => bug!("assignment does not match variant"), + Ineligible(_) => false, + } + }) + .map(|local| subst_field(info.field_tys[*local])); + + let mut variant = self.univariant_uninterned( + ty, + &variant_only_tys + .map(|ty| self.layout_of(ty)) + .collect::, _>>()?, + &ReprOptions::default(), + StructKind::Prefixed(prefix_size, prefix_align.abi))?; + variant.variants = Variants::Single { index }; + + let offsets = match variant.fields { + FieldPlacement::Arbitrary { offsets, .. } => offsets, + _ => bug!(), + }; + + // Now, stitch the promoted and variant-only fields back together in + // the order they are mentioned by our GeneratorLayout. + let mut next_variant_field = 0; + let mut combined_offsets = Vec::new(); + for local in variant_fields.iter() { + match assignments[*local] { + Unassigned => bug!(), + Assigned(_) => { + combined_offsets.push(offsets[next_variant_field]); + next_variant_field += 1; + } + Ineligible(field_idx) => { + let field_idx = field_idx.unwrap() as usize; + combined_offsets.push(promoted_offsets[field_idx]); + } + } + } + let memory_index = recompute_memory_index(&combined_offsets); + variant.fields = FieldPlacement::Arbitrary { offsets: combined_offsets, memory_index }; + + size = size.max(variant.size); + align = align.max(variant.align); + Ok(variant) + }).collect::, _>>()?; + + let abi = if prefix.abi.is_uninhabited() || + variants.iter().all(|v| v.abi.is_uninhabited()) { + Abi::Uninhabited + } else { + Abi::Aggregate { sized: true } + }; + let discr = match &self.layout_of(substs.discr_ty(tcx))?.abi { + Abi::Scalar(s) => s.clone(), + _ => bug!(), + }; + + let layout = tcx.intern_layout(LayoutDetails { + variants: Variants::Multiple { + discr, + discr_kind: DiscriminantKind::Tag, + discr_index, + variants, + }, + fields: outer_fields, + abi, + size, + align, + }); + debug!("generator layout ({:?}): {:#?}", ty, layout); + Ok(layout) + } +} + +impl<'a, 'tcx> LayoutCx<'tcx, TyCtxt<'a, 'tcx, 'tcx>> { /// This is invoked by the `layout_raw` query to record the final /// layout of each type. #[inline(always)] diff --git a/src/librustc_data_structures/bit_set.rs b/src/librustc_data_structures/bit_set.rs index ec7ff3bd81397..7a11ca070071b 100644 --- a/src/librustc_data_structures/bit_set.rs +++ b/src/librustc_data_structures/bit_set.rs @@ -636,7 +636,7 @@ impl GrowableBitSet { /// /// All operations that involve a row and/or column index will panic if the /// index exceeds the relevant bound. -#[derive(Clone, Debug)] +#[derive(Clone, Debug, Eq, PartialEq, RustcDecodable, RustcEncodable)] pub struct BitMatrix { num_rows: usize, num_columns: usize, @@ -658,6 +658,23 @@ impl BitMatrix { } } + /// Creates a new matrix, with `row` used as the value for every row. + pub fn from_row_n(row: &BitSet, num_rows: usize) -> BitMatrix { + let num_columns = row.domain_size(); + let words_per_row = num_words(num_columns); + assert_eq!(words_per_row, row.words().len()); + BitMatrix { + num_rows, + num_columns, + words: iter::repeat(row.words()).take(num_rows).flatten().cloned().collect(), + marker: PhantomData, + } + } + + pub fn rows(&self) -> impl Iterator { + (0..self.num_rows).map(R::new) + } + /// The range of bits for a given row. fn range(&self, row: R) -> (usize, usize) { let words_per_row = num_words(self.num_columns); @@ -737,6 +754,49 @@ impl BitMatrix { changed } + /// Adds the bits from `with` to the bits from row `write`, and + /// returns `true` if anything changed. + pub fn union_row_with(&mut self, with: &BitSet, write: R) -> bool { + assert!(write.index() < self.num_rows); + assert_eq!(with.domain_size(), self.num_columns); + let (write_start, write_end) = self.range(write); + let mut changed = false; + for (read_index, write_index) in (0..with.words().len()).zip(write_start..write_end) { + let word = self.words[write_index]; + let new_word = word | with.words()[read_index]; + self.words[write_index] = new_word; + changed |= word != new_word; + } + changed + } + + /// Sets every cell in `row` to true. + pub fn insert_all_into_row(&mut self, row: R) { + assert!(row.index() < self.num_rows); + let (start, end) = self.range(row); + let words = &mut self.words[..]; + for index in start..end { + words[index] = !0; + } + self.clear_excess_bits(row); + } + + /// Clear excess bits in the final word of the row. + fn clear_excess_bits(&mut self, row: R) { + let num_bits_in_final_word = self.num_columns % WORD_BITS; + if num_bits_in_final_word > 0 { + let mask = (1 << num_bits_in_final_word) - 1; + let (_, end) = self.range(row); + let final_word_idx = end - 1; + self.words[final_word_idx] &= mask; + } + } + + /// Gets a slice of the underlying words. + pub fn words(&self) -> &[Word] { + &self.words + } + /// Iterates through all the columns set to true in a given row of /// the matrix. pub fn iter<'a>(&'a self, row: R) -> BitIter<'a, C> { @@ -748,6 +808,12 @@ impl BitMatrix { marker: PhantomData, } } + + /// Returns the number of elements in `row`. + pub fn count(&self, row: R) -> usize { + let (start, end) = self.range(row); + self.words[start..end].iter().map(|e| e.count_ones() as usize).sum() + } } /// A fixed-column-size, variable-row-size 2D bit matrix with a moderately @@ -1057,6 +1123,7 @@ fn matrix_iter() { matrix.insert(2, 99); matrix.insert(4, 0); matrix.union_rows(3, 5); + matrix.insert_all_into_row(6); let expected = [99]; let mut iter = expected.iter(); @@ -1068,6 +1135,7 @@ fn matrix_iter() { let expected = [22, 75]; let mut iter = expected.iter(); + assert_eq!(matrix.count(3), expected.len()); for i in matrix.iter(3) { let j = *iter.next().unwrap(); assert_eq!(i, j); @@ -1076,6 +1144,7 @@ fn matrix_iter() { let expected = [0]; let mut iter = expected.iter(); + assert_eq!(matrix.count(4), expected.len()); for i in matrix.iter(4) { let j = *iter.next().unwrap(); assert_eq!(i, j); @@ -1084,11 +1153,24 @@ fn matrix_iter() { let expected = [22, 75]; let mut iter = expected.iter(); + assert_eq!(matrix.count(5), expected.len()); for i in matrix.iter(5) { let j = *iter.next().unwrap(); assert_eq!(i, j); } assert!(iter.next().is_none()); + + assert_eq!(matrix.count(6), 100); + let mut count = 0; + for (idx, i) in matrix.iter(6).enumerate() { + assert_eq!(idx, i); + count += 1; + } + assert_eq!(count, 100); + + if let Some(i) = matrix.iter(7).next() { + panic!("expected no elements in row, but contains element {:?}", i); + } } #[test] diff --git a/src/librustc_data_structures/stable_hasher.rs b/src/librustc_data_structures/stable_hasher.rs index 270d952062764..0c81c27a96ee5 100644 --- a/src/librustc_data_structures/stable_hasher.rs +++ b/src/librustc_data_structures/stable_hasher.rs @@ -503,6 +503,16 @@ impl HashStable for bit_set::BitSet } } +impl HashStable +for bit_set::BitMatrix +{ + fn hash_stable(&self, + ctx: &mut CTX, + hasher: &mut StableHasher) { + self.words().hash_stable(ctx, hasher); + } +} + impl_stable_hash_via_hash!(::std::path::Path); impl_stable_hash_via_hash!(::std::path::PathBuf); diff --git a/src/librustc_mir/dataflow/at_location.rs b/src/librustc_mir/dataflow/at_location.rs index d43fa4257e06c..9cba34b425350 100644 --- a/src/librustc_mir/dataflow/at_location.rs +++ b/src/librustc_mir/dataflow/at_location.rs @@ -131,6 +131,11 @@ where curr_state.subtract(&self.stmt_kill); f(curr_state.iter()); } + + /// Returns a bitset of the elements present in the current state. + pub fn as_dense(&self) -> &BitSet { + &self.curr_state + } } impl<'tcx, BD> FlowsAtLocation for FlowAtLocation<'tcx, BD> diff --git a/src/librustc_mir/transform/generator.rs b/src/librustc_mir/transform/generator.rs index d2c75ebe8d6aa..e3c3506454601 100644 --- a/src/librustc_mir/transform/generator.rs +++ b/src/librustc_mir/transform/generator.rs @@ -59,13 +59,14 @@ use rustc::ty::layout::VariantIdx; use rustc::ty::subst::SubstsRef; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::indexed_vec::{Idx, IndexVec}; -use rustc_data_structures::bit_set::BitSet; +use rustc_data_structures::bit_set::{BitSet, BitMatrix}; use std::borrow::Cow; use std::iter; use std::mem; use crate::transform::{MirPass, MirSource}; use crate::transform::simplify; use crate::transform::no_landing_pads::no_landing_pads; +use crate::dataflow::{DataflowResults, DataflowResultsConsumer, FlowAtLocation}; use crate::dataflow::{do_dataflow, DebugFormatted, state_for_location}; use crate::dataflow::{MaybeStorageLive, HaveBeenBorrowedLocals}; use crate::util::dump_mir; @@ -393,16 +394,33 @@ impl<'tcx> Visitor<'tcx> for StorageIgnored { } } +struct LivenessInfo { + /// Which locals are live across any suspension point. + /// + /// GeneratorSavedLocal is indexed in terms of the elements in this set; + /// i.e. GeneratorSavedLocal::new(1) corresponds to the second local + /// included in this set. + live_locals: liveness::LiveVarSet, + + /// The set of saved locals live at each suspension point. + live_locals_at_suspension_points: Vec>, + + /// For every saved local, the set of other saved locals that are + /// storage-live at the same time as this local. We cannot overlap locals in + /// the layout which have conflicting storage. + storage_conflicts: BitMatrix, + + /// For every suspending block, the locals which are storage-live across + /// that suspension point. + storage_liveness: FxHashMap, +} + fn locals_live_across_suspend_points( tcx: TyCtxt<'a, 'tcx, 'tcx>, body: &Body<'tcx>, source: MirSource<'tcx>, movable: bool, -) -> ( - liveness::LiveVarSet, - FxHashMap, - BitSet, -) { +) -> LivenessInfo { let dead_unwinds = BitSet::new_empty(body.basic_blocks().len()); let def_id = source.def_id(); @@ -432,7 +450,7 @@ fn locals_live_across_suspend_points( }; // Calculate the liveness of MIR locals ignoring borrows. - let mut set = liveness::LiveVarSet::new_empty(body.local_decls.len()); + let mut live_locals = liveness::LiveVarSet::new_empty(body.local_decls.len()); let mut liveness = liveness::liveness_of_locals( body, ); @@ -445,13 +463,10 @@ fn locals_live_across_suspend_points( ); let mut storage_liveness_map = FxHashMap::default(); - - let mut suspending_blocks = BitSet::new_empty(body.basic_blocks().len()); + let mut live_locals_at_suspension_points = Vec::new(); for (block, data) in body.basic_blocks().iter_enumerated() { if let TerminatorKind::Yield { .. } = data.terminator().kind { - suspending_blocks.insert(block); - let loc = Location { block: block, statement_index: data.statements.len(), @@ -490,20 +505,177 @@ fn locals_live_across_suspend_points( // Locals live are live at this point only if they are used across // suspension points (the `liveness` variable) // and their storage is live (the `storage_liveness` variable) - storage_liveness.intersect(&liveness.outs[block]); + let mut live_locals_here = storage_liveness; + live_locals_here.intersect(&liveness.outs[block]); - let live_locals = storage_liveness; + // The generator argument is ignored + live_locals_here.remove(self_arg()); - // Add the locals life at this suspension point to the set of locals which live across + // Add the locals live at this suspension point to the set of locals which live across // any suspension points - set.union(&live_locals); + live_locals.union(&live_locals_here); + + live_locals_at_suspension_points.push(live_locals_here); + } + } + + // Renumber our liveness_map bitsets to include only the locals we are + // saving. + let live_locals_at_suspension_points = live_locals_at_suspension_points + .iter() + .map(|live_here| renumber_bitset(&live_here, &live_locals)) + .collect(); + + let storage_conflicts = compute_storage_conflicts( + body, + &live_locals, + &ignored, + storage_live, + storage_live_analysis); + + LivenessInfo { + live_locals, + live_locals_at_suspension_points, + storage_conflicts, + storage_liveness: storage_liveness_map, + } +} + +/// Renumbers the items present in `stored_locals` and applies the renumbering +/// to 'input`. +/// +/// For example, if `stored_locals = [1, 3, 5]`, this would be renumbered to +/// `[0, 1, 2]`. Thus, if `input = [3, 5]` we would return `[1, 2]`. +fn renumber_bitset(input: &BitSet, stored_locals: &liveness::LiveVarSet) +-> BitSet { + assert!(stored_locals.superset(&input), "{:?} not a superset of {:?}", stored_locals, input); + let mut out = BitSet::new_empty(stored_locals.count()); + for (idx, local) in stored_locals.iter().enumerate() { + let saved_local = GeneratorSavedLocal::from(idx); + if input.contains(local) { + out.insert(saved_local); + } + } + debug!("renumber_bitset({:?}, {:?}) => {:?}", input, stored_locals, out); + out +} + +/// For every saved local, looks for which locals are StorageLive at the same +/// time. Generates a bitset for every local of all the other locals that may be +/// StorageLive simultaneously with that local. This is used in the layout +/// computation; see `GeneratorLayout` for more. +fn compute_storage_conflicts( + body: &'mir Body<'tcx>, + stored_locals: &liveness::LiveVarSet, + ignored: &StorageIgnored, + storage_live: DataflowResults<'tcx, MaybeStorageLive<'mir, 'tcx>>, + _storage_live_analysis: MaybeStorageLive<'mir, 'tcx>, +) -> BitMatrix { + assert_eq!(body.local_decls.len(), ignored.0.domain_size()); + assert_eq!(body.local_decls.len(), stored_locals.domain_size()); + debug!("compute_storage_conflicts({:?})", body.span); + debug!("ignored = {:?}", ignored.0); + + // Storage ignored locals are not eligible for overlap, since their storage + // is always live. + let mut ineligible_locals = ignored.0.clone(); + ineligible_locals.intersect(&stored_locals); + + // Compute the storage conflicts for all eligible locals. + let mut visitor = StorageConflictVisitor { + body, + stored_locals: &stored_locals, + local_conflicts: BitMatrix::from_row_n(&ineligible_locals, body.local_decls.len()) + }; + let mut state = FlowAtLocation::new(storage_live); + visitor.analyze_results(&mut state); + let local_conflicts = visitor.local_conflicts; + + // Compress the matrix using only stored locals (Local -> GeneratorSavedLocal). + // + // NOTE: Today we store a full conflict bitset for every local. Technically + // this is twice as many bits as we need, since the relation is symmetric. + // However, in practice these bitsets are not usually large. The layout code + // also needs to keep track of how many conflicts each local has, so it's + // simpler to keep it this way for now. + let mut storage_conflicts = BitMatrix::new(stored_locals.count(), stored_locals.count()); + for (idx_a, local_a) in stored_locals.iter().enumerate() { + let saved_local_a = GeneratorSavedLocal::new(idx_a); + if ineligible_locals.contains(local_a) { + // Conflicts with everything. + storage_conflicts.insert_all_into_row(saved_local_a); + } else { + // Keep overlap information only for stored locals. + for (idx_b, local_b) in stored_locals.iter().enumerate() { + let saved_local_b = GeneratorSavedLocal::new(idx_b); + if local_conflicts.contains(local_a, local_b) { + storage_conflicts.insert(saved_local_a, saved_local_b); + } + } } } + storage_conflicts +} + +struct StorageConflictVisitor<'body, 'tcx: 'body, 's> { + body: &'body Body<'tcx>, + stored_locals: &'s liveness::LiveVarSet, + // FIXME(tmandry): Consider using sparse bitsets here once we have good + // benchmarks for generators. + local_conflicts: BitMatrix, +} + +impl<'body, 'tcx: 'body, 's> DataflowResultsConsumer<'body, 'tcx> +for StorageConflictVisitor<'body, 'tcx, 's> { + type FlowState = FlowAtLocation<'tcx, MaybeStorageLive<'body, 'tcx>>; + + fn body(&self) -> &'body Body<'tcx> { + self.body + } + + fn visit_block_entry(&mut self, + block: BasicBlock, + flow_state: &Self::FlowState) { + // statement_index is only used for logging, so this is fine. + self.apply_state(flow_state, Location { block, statement_index: 0 }); + } + + fn visit_statement_entry(&mut self, + loc: Location, + _stmt: &Statement<'tcx>, + flow_state: &Self::FlowState) { + self.apply_state(flow_state, loc); + } + + fn visit_terminator_entry(&mut self, + loc: Location, + _term: &Terminator<'tcx>, + flow_state: &Self::FlowState) { + self.apply_state(flow_state, loc); + } +} - // The generator argument is ignored - set.remove(self_arg()); +impl<'body, 'tcx: 'body, 's> StorageConflictVisitor<'body, 'tcx, 's> { + fn apply_state(&mut self, + flow_state: &FlowAtLocation<'tcx, MaybeStorageLive<'body, 'tcx>>, + loc: Location) { + // Ignore unreachable blocks. + match self.body.basic_blocks()[loc.block].terminator().kind { + TerminatorKind::Unreachable => return, + _ => (), + }; - (set, storage_liveness_map, suspending_blocks) + let mut eligible_storage_live = flow_state.as_dense().clone(); + eligible_storage_live.intersect(&self.stored_locals); + + for local in eligible_storage_live.iter() { + self.local_conflicts.union_row_with(&eligible_storage_live, local); + } + + if eligible_storage_live.count() > 1 { + trace!("at {:?}, eligible_storage_live={:?}", loc, eligible_storage_live); + } + } } fn compute_layout<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, @@ -517,8 +689,9 @@ fn compute_layout<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, FxHashMap) { // Use a liveness analysis to compute locals which are live across a suspension point - let (live_locals, storage_liveness, suspending_blocks) = - locals_live_across_suspend_points(tcx, body, source, movable); + let LivenessInfo { + live_locals, live_locals_at_suspension_points, storage_conflicts, storage_liveness + } = locals_live_across_suspend_points(tcx, body, source, movable); // Erase regions from the types passed in from typeck so we can compare them with // MIR types @@ -547,37 +720,47 @@ fn compute_layout<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, let dummy_local = LocalDecl::new_internal(tcx.mk_unit(), body.span); - // Gather live locals and their indices replacing values in mir.local_decls with a dummy - // to avoid changing local indices - let live_decls = live_locals.iter().map(|local| { + // Gather live locals and their indices replacing values in body.local_decls + // with a dummy to avoid changing local indices. + let mut locals = IndexVec::::new(); + let mut tys = IndexVec::::new(); + let mut decls = IndexVec::::new(); + for (idx, local) in live_locals.iter().enumerate() { let var = mem::replace(&mut body.local_decls[local], dummy_local.clone()); - (local, var) - }); + locals.push(local); + tys.push(var.ty); + decls.push(var); + debug!("generator saved local {:?} => {:?}", GeneratorSavedLocal::from(idx), local); + } - // For now we will access everything via variant #3, leaving empty variants - // for the UNRESUMED, RETURNED, and POISONED states. - // If there were a yield-less generator without a variant #3, it would not - // have any vars to remap, so we would never use this. - let variant_index = VariantIdx::new(3); + // Leave empty variants for the UNRESUMED, RETURNED, and POISONED states. + const RESERVED_VARIANTS: usize = 3; + // Build the generator variant field list. // Create a map from local indices to generator struct indices. - // We also create a vector of the LocalDecls of these locals. + let mut variant_fields: IndexVec> = + iter::repeat(IndexVec::new()).take(RESERVED_VARIANTS).collect(); let mut remap = FxHashMap::default(); - let mut decls = IndexVec::new(); - for (idx, (local, var)) in live_decls.enumerate() { - remap.insert(local, (var.ty, variant_index, idx)); - decls.push(var); + for (suspension_point_idx, live_locals) in live_locals_at_suspension_points.iter().enumerate() { + let variant_index = VariantIdx::from(RESERVED_VARIANTS + suspension_point_idx); + let mut fields = IndexVec::new(); + for (idx, saved_local) in live_locals.iter().enumerate() { + fields.push(saved_local); + // Note that if a field is included in multiple variants, we will + // just use the first one here. That's fine; fields do not move + // around inside generators, so it doesn't matter which variant + // index we access them by. + remap.entry(locals[saved_local]).or_insert((tys[saved_local], variant_index, idx)); + } + variant_fields.push(fields); } - let field_tys = decls.iter().map(|field| field.ty).collect::>(); - - // Put every var in each variant, for now. - let all_vars = (0..field_tys.len()).map(GeneratorSavedLocal::from).collect(); - let empty_variants = iter::repeat(IndexVec::new()).take(3); - let state_variants = iter::repeat(all_vars).take(suspending_blocks.count()); + debug!("generator variant_fields = {:?}", variant_fields); + debug!("generator storage_conflicts = {:#?}", storage_conflicts); let layout = GeneratorLayout { - field_tys, - variant_fields: empty_variants.chain(state_variants).collect(), + field_tys: tys, + variant_fields, + storage_conflicts, __local_debuginfo_codegen_only_do_not_use: decls, }; diff --git a/src/test/run-pass/async-fn-size.rs b/src/test/run-pass/async-fn-size.rs new file mode 100644 index 0000000000000..05afd6d401977 --- /dev/null +++ b/src/test/run-pass/async-fn-size.rs @@ -0,0 +1,106 @@ +// edition:2018 +// aux-build:arc_wake.rs + +#![feature(async_await, await_macro)] + +extern crate arc_wake; + +use std::pin::Pin; +use std::future::Future; +use std::sync::{ + Arc, + atomic::{self, AtomicUsize}, +}; +use std::task::{Context, Poll}; +use arc_wake::ArcWake; + +struct Counter { + wakes: AtomicUsize, +} + +impl ArcWake for Counter { + fn wake(self: Arc) { + Self::wake_by_ref(&self) + } + fn wake_by_ref(arc_self: &Arc) { + arc_self.wakes.fetch_add(1, atomic::Ordering::SeqCst); + } +} + +struct WakeOnceThenComplete(bool, u8); + +impl Future for WakeOnceThenComplete { + type Output = u8; + fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll { + if self.0 { + Poll::Ready(self.1) + } else { + cx.waker().wake_by_ref(); + self.0 = true; + Poll::Pending + } + } +} + +fn wait(fut: impl Future) -> u8 { + let mut fut = Box::pin(fut); + let counter = Arc::new(Counter { wakes: AtomicUsize::new(0) }); + let waker = ArcWake::into_waker(counter.clone()); + let mut cx = Context::from_waker(&waker); + loop { + match fut.as_mut().poll(&mut cx) { + Poll::Ready(out) => return out, + Poll::Pending => (), + } + } +} + +fn base() -> WakeOnceThenComplete { WakeOnceThenComplete(false, 1) } + +async fn await1_level1() -> u8 { + await!(base()) +} + +async fn await2_level1() -> u8 { + await!(base()) + await!(base()) +} + +async fn await3_level1() -> u8 { + await!(base()) + await!(base()) + await!(base()) +} + +async fn await3_level2() -> u8 { + await!(await3_level1()) + await!(await3_level1()) + await!(await3_level1()) +} + +async fn await3_level3() -> u8 { + await!(await3_level2()) + await!(await3_level2()) + await!(await3_level2()) +} + +async fn await3_level4() -> u8 { + await!(await3_level3()) + await!(await3_level3()) + await!(await3_level3()) +} + +async fn await3_level5() -> u8 { + await!(await3_level4()) + await!(await3_level4()) + await!(await3_level4()) +} + +fn main() { + assert_eq!(2, std::mem::size_of_val(&base())); + assert_eq!(8, std::mem::size_of_val(&await1_level1())); + assert_eq!(12, std::mem::size_of_val(&await2_level1())); + assert_eq!(12, std::mem::size_of_val(&await3_level1())); + assert_eq!(20, std::mem::size_of_val(&await3_level2())); + assert_eq!(28, std::mem::size_of_val(&await3_level3())); + assert_eq!(36, std::mem::size_of_val(&await3_level4())); + assert_eq!(44, std::mem::size_of_val(&await3_level5())); + + assert_eq!(1, wait(base())); + assert_eq!(1, wait(await1_level1())); + assert_eq!(2, wait(await2_level1())); + assert_eq!(3, wait(await3_level1())); + assert_eq!(9, wait(await3_level2())); + assert_eq!(27, wait(await3_level3())); + assert_eq!(81, wait(await3_level4())); + assert_eq!(243, wait(await3_level5())); +} diff --git a/src/test/run-pass/generator/overlap-locals.rs b/src/test/run-pass/generator/overlap-locals.rs new file mode 100644 index 0000000000000..704484a480e26 --- /dev/null +++ b/src/test/run-pass/generator/overlap-locals.rs @@ -0,0 +1,27 @@ +#![feature(generators)] + +fn main() { + let a = || { + { + let w: i32 = 4; + yield; + println!("{:?}", w); + } + { + let x: i32 = 5; + yield; + println!("{:?}", x); + } + { + let y: i32 = 6; + yield; + println!("{:?}", y); + } + { + let z: i32 = 7; + yield; + println!("{:?}", z); + } + }; + assert_eq!(8, std::mem::size_of_val(&a)); +}