-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkde_corner.py
416 lines (307 loc) · 14.4 KB
/
kde_corner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
"""kde_corner - Corner plots with proper KDE defined uncertainties.
"""
from __future__ import print_function
# may be needed now. IDK
from matplotlib import use
use("PDF")
# Todo, type hints force python >= 3.5
from typing import Union
from itertools import cycle
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from scipy.stats import gaussian_kde, scoreatpercentile
try:
from tqdm import trange
except:
trange = range
plt.rcParams["font.family"] = "serif"
__all__ = ['kde_corner', 'run_2D_KDE']
import seaborn as sns
def reflect(samps, othersamps = None, reflect_cut = 0.2):
the_min = min(samps)
the_max = max(samps)
inds = np.where((samps < the_min*(1. - reflect_cut) + the_max*reflect_cut) & (samps > the_min))
pad_samples = np.concatenate((samps, the_min - (samps[inds] - the_min)))
if np.all(othersamps != None):
pad_other = np.concatenate((othersamps, othersamps[inds]))
inds = np.where((samps > the_min*reflect_cut + the_max*(1. - reflect_cut)) & (samps < the_max))
pad_samples = np.concatenate((pad_samples, the_max + (the_max - samps[inds])))
if np.all(othersamps != None):
pad_other = np.concatenate((pad_other, othersamps[inds]))
return pad_samples, pad_other
return pad_samples
def reflect_2D(samps1, samps2, reflect_cut = 0.2):
pad_samps1, pad_samps2 = reflect(samps1, samps2, reflect_cut = reflect_cut)
pad_samps2, pad_samps1 = reflect(pad_samps2, pad_samps1, reflect_cut = reflect_cut)
return pad_samps1, pad_samps2
def every_other_tick(ticks):
"""Matplotlib loves tick labels!"""
labels = []
for i in range(len(ticks) - 1):
if i % 2 == len(ticks) % 2:
labels.append(ticks[i])
else:
labels.append("")
labels.append("")
return labels
def run_2D_KDE(samples_i, samples_j, bw_method = 0.1, contours = [0.317311, 0.0455003], steps = 100):
pad_samples_i, pad_samples_j = reflect_2D(samples_i, samples_j)
xvals, yvals = np.meshgrid(np.linspace(min(samples_i), max(samples_i), steps),
np.linspace(min(samples_j), max(samples_j), steps))
try:
kernel = gaussian_kde(np.array([pad_samples_i, pad_samples_j]), bw_method = bw_method)
except:
print("Couldn't make KDE!")
return xvals*0, [0], xvals, yvals, lambda x: 0*x
eval_points = np.array([xvals.reshape(steps**2), yvals.reshape(steps**2)])
kernel_eval = kernel(eval_points)
norm_term = kernel_eval.sum()
kernel_eval /= norm_term
kernel_sort = np.sort(kernel_eval)
kernel_eval = np.reshape(kernel_eval, (steps, steps))
kernel_cum = np.cumsum(kernel_sort)
levels = [kernel_sort[np.argmin(abs(kernel_cum - item))] for item in contours[::-1]]
return kernel_eval, levels, xvals, yvals, lambda x: kernel(x)/norm_term
def latex_1sigma_credible(vals, dataset_labels):
# vals is 2d: datasets by samples
percentiles = scoreatpercentile(vals, [15.8655, 50., 84.1345], axis = 1)
smallest_unc = (percentiles[1:] - percentiles[:-1]).min()
decimal_places = int(np.around(0.80102999566 - np.log10(smallest_unc)))
fmt_txt = "%." + str(decimal_places) + "f"
latex_txt = ""
for i in range(len(vals)):
if dataset_labels[i] != "":
the_label = dataset_labels[i] + ": "
else:
the_label = ""
latex_txt += (the_label + "$" + fmt_txt + "^{+" + fmt_txt + "}_{-" + fmt_txt + "}$\n") % (percentiles[1,i], percentiles[2,i] - percentiles[1,i], percentiles[1,i] - percentiles[0,i])
#print(latex_txt)
return latex_txt[:-1] # Leave off last \n
def kde_corner(samples, labels, pltname = None, figsize = None, pad_side = None,
pad_between = None, label_coord = -0.25, contours = [0.317311, 0.0455003],
colors = None, bw_method = 0.1, labelfontsize = None, dataset_labels = None,
show_contours = None, ax_limits=[], truths=None, titles=None):
# type: (samples, labels, str, figsize, pad_side, pad_between, float, contours,
# colors, float, labelfontsize) -> Union[None, matplotlib.pyplot.figure]
"""
labels is a list of length n_var.
I recommend setting bw_method to 0.1.
Parameters
----------
samples: array_like of floats
An array of variables and samples.
labels: array_like of strings
This is the the labels that should be added to the
Should be one label per variable to be plotted.
pltname: str
If `pltname` is given, resulting figure is saved and `kde_corner` returns `None`.
figsize: float
Defaults to ???
pad_side: float
Defaults to ???
pad_between: float
Defaults to ???
label_coord: float
contours: array-like of floats
0.317311 is 1-sigma, and 0.0455003 is 2-sigma
colors: array-like
bw_method: float
lablefontsize:
dataset_labels: Labels for each dataset
titles:
15.8655, 50, and 84.1345 percentiles, not gaurenteed to match the KDE CR.
Returns
-------
matplotlib.pyplot.figure or None:
Returns the figure containing the corner plot. Alternatively if `pltname` is used `None`
Notes
-----
It is best to use multiple contours or multiple data sets, but not both.
"""
samples = np.array(samples)
print("samples.shape", samples.shape)
try:
samples[0][0][0] # Datasets, parameters, samples
except IndexError:
# there is only 1 data set here
N_datasets = 1
if len(samples) > len(samples[0]):
samples = np.transpose(samples)
else:
samples = samples #todo(this seems unnecessary)
n_var = len(samples)
alpha = 1
samples = np.expand_dims(samples, axis=0) # This way we can loop over the set of samples.
else:
# There is a collection of data sets here
N_datasets = len(samples)
for i, samp in enumerate(samples):
if len(samp) > len(samp[0]):
samples[i] = np.transpose(samp) # this does not work well with np.arrays.
else:
samples[i] = samp #TODO: fix
n_var = len(samples[0])
# alpha = 0.5
alpha = 0.4
# have this after try-except-else block so transpose works.
samples = np.array(samples)
if figsize == None:
figsize = [4 + 1.5*n_var]*2
if pad_between == None:
pad_between = 0.1/figsize[0]
if pad_side == None:
pad_side = pad_between*8.
if labelfontsize == None:
labelfontsize = 6 + int(figsize[0])
print("labelfontsize ", labelfontsize)
if dataset_labels == None:
dataset_labels = [""]*len(samples)
if show_contours == None:
show_contours = [1]*len(samples)
if colors == None:
# TODO: make this default back to greyscale for 1 dataset
colors = []
grayscales = np.linspace(0.8, 0.4, len(contours))
# colors = [[item]*3 for item in grayscales].
colors = [sns.color_palette("gray_r", n_colors=len(contours)),
sns.color_palette("Blues", n_colors=len(contours)),
sns.color_palette("Oranges", n_colors=len(contours))]
# sns.color_palette("Reds", n_colors=len(contours)),
# sns.color_palette("Purples", n_colors=len(contours))]
# colors =
# for _ in samples:
# colors = [[item]*3 for item in grayscales]
# colors = cm.ScalarMappable(cmap='Blues').to_rgba(grayscales, alpha=0.5) [
# colors = [plt.get_cmap('Blues'), plt.get_cmap('Purples') ] # hard code for two samples
truth_color = "#4682b4"
#colors = colors[::-1]
print("colors", colors)
fig = plt.figure(figsize = figsize)
plt_size = (1. - pad_side - n_var*pad_between)/n_var
plt_starts = pad_side + np.arange(float(n_var))*(plt_size + pad_between)
plt_limits = []
plt_ticks = []
for i in range(n_var):
ax = fig.add_axes([plt_starts[i], plt_starts[n_var - 1 - i], plt_size, plt_size])
#ax.hist(samples[i])
ax.set_title(latex_1sigma_credible(samples[:,i,:], dataset_labels))
for samp, show_contour, color, dataset_label in zip(samples, show_contours, colors, dataset_labels):
if show_contour:
pad_samples = reflect(samp[i])
try:
kernel = gaussian_kde(pad_samples, bw_method = bw_method)
except:
print("Couldn't run KDE!")
kernel = lambda x: x*0
vals = np.linspace(min(samp[i]), max(samp[i]), 1000)
kernel_eval = kernel(vals)
kernel_eval /= kernel_eval.sum()
kernel_sort = np.sort(kernel_eval)
kernel_cum = np.cumsum(kernel_sort)
levels = [kernel_sort[np.argmin(abs(kernel_cum - item))] for item in contours[::-1]] + [1.e20]
print("1D levels ", levels)
for j in range(len(contours)):
if (i == 0) and (j == 0):
the_label = dataset_label
else:
the_label = ""
ax.fill_between(vals, 0, (kernel_eval > levels[j])*(kernel_eval < levels[j+1])*kernel_eval, color = color[j], alpha=alpha, label = the_label)
if the_label != "":
fig.legend(bbox_to_anchor=(1.0, 1.0))#loc = 'best')
if len(samples) == 1:
plot_this_color = 'k'
else:
plot_this_color = color
try:
plot_this_color[0][0]
plot_this_color = plot_this_color[0]
except:
pass
print("plot_this_color", plot_this_color)
ax.plot(vals, kernel_eval, color = plot_this_color)
ax.set_ylim(0, ax.get_ylim()[1])
# TODO: update so this does not get redone each time. Pull out of loop and do use slicing?
ax.set_yticks([])
if i < n_var - 1:
ax.set_xticklabels([])
else:
ax.set_xlabel(labels[i], fontsize=labelfontsize)
plt.xticks(rotation = 45)
plt.yticks(rotation = 45)
cur_min = samples[:,i,:].min()
cur_max = samples[:,i,:].max()
print("cur_min, cur_max", cur_min, cur_max)
if float((samples[:,i,:] < cur_min*0.98 + cur_max*0.02).sum())/samples[:,i,:].size > 0.004 or float((samples[:,i,:] > cur_max*0.98 + cur_min*0.02).sum())/samples[:,i,:].size > 0.004:
ax.set_xlim(cur_min, cur_max)
print("setting to cur_min, cur_max")
#TODO(This is the default operation, but overwriting plt_limits will change the plot limits. I think.)
if not ax_limits == []:
ax.set_xlim(ax_limits[i])
plt_limits.append(ax.get_xlim())
plt_ticks.append(ax.get_xticks())
if plt_ticks[-1][-1] > plt_limits[-1][-1] + 1.e-9:
print("Weird! Deleting.")
plt_ticks[-1] = plt_ticks[-1][:-1]
if plt_ticks[-1][0] < plt_limits[-1][0] - 1.e-9:
plt_ticks[-1] = plt_ticks[-1][1:]
print("Weird! Deleting.")
if i >= n_var - 1:
#ax.set_xticklabels(every_other_tick(plt_ticks[i]))
ax.yaxis.set_label_coords(label_coord, 0.5)
ax.xaxis.set_label_coords(0.5, label_coord)
if truths is not None and truths[i] is not None:
ax.axvline(truths[i], color=truth_color)
for i in trange(n_var - 1):
for j in range(i+1, n_var):
ax = fig.add_axes([plt_starts[i], plt_starts[n_var - 1 - j], plt_size, plt_size])
for samp, show_contour, color in zip(samples, show_contours, colors):
if show_contour:
kernel_eval, levels, xvals, yvals, kfn = run_2D_KDE(samp[i], samp[j], bw_method = bw_method, contours = contours)
# TODO: only use alpha if multiple samples
print("levels", levels + [1])
ax.contourf(xvals, yvals, kernel_eval, levels = levels + [1], colors = color + [(1,1,1)], alpha=alpha)
ax.contour(xvals, yvals, kernel_eval, levels = levels, colors = color)
print("samp.shape", samp.shape)
else:
plt.plot(np.median(samp[i]), np.median(samp[j]), 'o', color = color)
if truths is not None:
if truths[j] is not None and truths[i] is not None:
ax.plot(truths[i], truths[j], "s", color=truth_color)
if truths[i] is not None:
ax.axvline(truths[i], color=truth_color)
if truths[j] is not None:
ax.axhline(truths[j], color=truth_color)
# TODO: update so this does not get redone each time. Pull out of loop and do use slicing?
ax.set_xlim(plt_limits[i])
ax.set_ylim(plt_limits[j])
ax.set_xticks(plt_ticks[i])
plt.xticks(rotation=45)# updated by benjamin.rose@me.com to always rotate labels.
ax.set_yticks(plt_ticks[j])
if i > 0:
ax.set_yticklabels([])
else:
ax.set_ylabel(labels[j], fontsize=labelfontsize)
#ax.set_yticklabels(every_other_tick(plt_ticks[j]), rotation = 45)
if j < (n_var - 1):
ax.set_xticklabels([])
else:
ax.set_xlabel(labels[i], fontsize=labelfontsize)
#ax.set_xticklabels(every_other_tick(plt_ticks[i]), rotation = 45)
print("xticks ", labels[i], ax.get_xticks())#, every_other_tick(plt_ticks[i]), plt_limits[i]
ax.yaxis.set_label_coords(label_coord, 0.5)
ax.xaxis.set_label_coords(0.5, label_coord)
if pltname == None:
return fig
else:
plt.savefig(pltname, bbox_inches = 'tight')
plt.close()
def get_color():
"""A generator to cycle through a fix set of color palettes.
This allows kde_corner to work with arbitrary number of datasets,
though if you get too long it will not look good since colors will
start to repeat.
"""
colors = [sns.color_palette("Blues", n_colors=len(contours)),
sns.color_palette("Reds", n_colors=len(contours))]
yield cycle(colors)