diff --git a/python/mxnet/gluon/trainer.py b/python/mxnet/gluon/trainer.py index c4d49e82c908..f6c0a31b52e2 100644 --- a/python/mxnet/gluon/trainer.py +++ b/python/mxnet/gluon/trainer.py @@ -28,6 +28,15 @@ class Trainer(object): """Applies an `Optimizer` on a set of Parameters. Trainer should be used together with `autograd`. + .. note:: + + For the following cases, updates will always happen on kvstore, + i.e., you cannot set update_on_kvstore=False. + + - dist kvstore with sparse weights or sparse gradients + - dist async kvstore + - `optimizer.lr_scheduler` is not None + Parameters ---------- params : ParameterDict @@ -115,11 +124,12 @@ def _init_optimizer(self, optimizer, optimizer_params): "optimizer_params must be None if optimizer is an instance of " \ "Optimizer instead of str" self._optimizer = optimizer + # param_dict must not be deep copied, so that if user mutate the lr_mult + # or wd_mult of some parameters, it takes effect. self._optimizer.param_dict = param_dict else: self._optimizer = opt.create(optimizer, param_dict=param_dict, **optimizer_params) - self._updaters = [opt.get_updater(self._optimizer) \ for _ in self._contexts] @@ -158,59 +168,82 @@ def _reset_kvstore(self): def _init_kvstore(self): """Create kvstore.""" config = self._kvstore_params - # if weight is sparse, the weight must be updated on KVStore. - # training loop contains: - # - row_sparse_pull(sparse_weight) - # - forward() - # - backward() - # - push(sparse_grad), push(dense_grad) - # - pull(dense_weight) + # configure kvstore, update_on_kvstore and self._distributed on three cases: if self._contains_sparse_weight: + # If weight is sparse, kvstore must be present and the weight must be updated on kvstore. + # The training loop is the following: + # - row_sparse_pull(sparse_weight) + # - forward() + # - backward() + # - push_and_update(grad) + # - pull(weight) kvstore, update_on_kvstore = _create_sparse_kvstore(config['kvstore']) - # raise Error if update_on_kvstore is set to False by the user + self._distributed = 'dist' in kvstore.type + # raise err if user provides unsupported configs if config['update_on_kvstore'] is False: - raise RuntimeError("Cannot set update_on_kvstore to False when sparse weights " - "are present.") - # if weight is dense and grad is sparse, the weight better not be updated on KVStore. - # training loop contains: - # - forward() - # - backward() - # - push(grad) - # - pull(grad) - # - update(grad, weight) + raise ValueError("Cannot set update_on_kvstore=False when sparse weights " + "are present.") + elif self._contains_sparse_grad: + # For single node training with dense weight and sparse grad, + # we prefer update_on_kvstore=False because this is usually faster. + # This means we push and pull sparse gradients, and we do not store weight in kvstore. + # The training loop is the following: + # - forward() + # - backward() + # - push(grad) + # - pull(grad) + # - update(grad, weight) + # + # For multi-node training with dense weight and sparse grad, + # only update_on_kvstore=True is supported, due to the fact that + # kv.row_sparse_pull(grad) is not implemented. + # Therefore, we push sparse gradients and pull dense weights. + # The training loop contains: + # - forward() + # - backward() + # - push_and_update(grad) + # - pull(weight) arg_arrays = {param.name: param.data(self._contexts[0]) for param in self._params} kvstore, _ = _create_kvstore(config['kvstore'], len(self._contexts), arg_arrays) - update_on_kvstore = False - # normal case + self._distributed = 'dist' in kvstore.type if kvstore else False + update_on_kvstore = self._distributed + # raise err if user provides unsupported configs + if config['update_on_kvstore'] is not None: + if config['update_on_kvstore'] is False and self._distributed: + raise ValueError("Cannot set update_on_kvstore=False on dist kvstore " + "when sparse gradients are present.") + update_on_kvstore = config['update_on_kvstore'] + else: + # Training with dense weight and dense gradients. + # The only unsupported mode is async with update_on_kvstore=False arg_arrays = {param.name: param.data(self._contexts[0]) for param in self._params} kvstore, update_on_kvstore = _create_kvstore(config['kvstore'], len(self._contexts), arg_arrays) - if kvstore and 'async' in kvstore.type and config['update_on_kvstore'] is not None\ - and not config['update_on_kvstore']: - raise ValueError("Please set update_on_kvstore to true " - "when training in async mode.") - + self._distributed = 'dist' in kvstore.type if kvstore else False + if self._distributed and 'async' in kvstore.type: + update_on_kvstore = True + # raise err if user provides unsupported configs + if config['update_on_kvstore'] is False: + raise ValueError("Please set update_on_kvstore=True " + "when training in async mode.") if config['update_on_kvstore'] is not None: update_on_kvstore = config['update_on_kvstore'] + # set grad compression and optimizers if kvstore: if self._compression_params: kvstore.set_gradient_compression(self._compression_params) - self._distributed = 'dist' in kvstore.type - if self._distributed: - # kv.pull(row_sparse_grad) is not supported for dist kvstore - # Captures condition for dist_async, dist_device_sync or based on config for - # update_on_kvstore - update_on_kvstore = self._contains_sparse_weight or self._contains_sparse_grad \ - or 'device' in kvstore.type or 'async' in kvstore.type \ - or config['update_on_kvstore'] if update_on_kvstore: # optimizer preferably needs to be set before init for multiprecision kvstore.set_optimizer(self._optimizer) self._kvstore = kvstore self._update_on_kvstore = update_on_kvstore + if self._optimizer.lr_scheduler and not self._update_on_kvstore: + raise ValueError("update_on_kvstore=False does not support " \ + "optimizer with LRScheduler. Please " \ + "consider setting learning rate manually.") else: self._kvstore = None self._update_on_kvstore = None @@ -255,6 +288,16 @@ def _row_sparse_pull(self, parameter, out, row_id, full_idx=False): else: self._kvstore.row_sparse_pull(idx, out=out, row_ids=row_id, priority=-idx) + def _check_and_rescale_grad(self, scale): + if self._update_on_kvstore and self._distributed and self._kv_initialized: + if self._optimizer.rescale_grad != scale: + raise UserWarning('Possible change in the `batch_size` from previous ' + '`step` detected. Optimizer gradient normalizing ' + 'factor will not change w.r.t new batch_size when ' + 'update_on_kvstore=True and when distributed kvstore ' + 'is used.') + self._optimizer.rescale_grad = scale + def step(self, batch_size, ignore_stale_grad=False): """Makes one step of parameter update. Should be called after `autograd.backward()` and outside of `record()` scope. @@ -274,13 +317,7 @@ def step(self, batch_size, ignore_stale_grad=False): been updated by `backward` after last step) and skip update. """ rescale_grad = self._scale / batch_size - if self._update_on_kvstore and self._distributed and \ - self._optimizer.rescale_grad != rescale_grad: - raise UserWarning('Possible change in the `batch_size` from previous `step` detected.' \ - 'Optimizer gradient normalizing factor will not change w.r.t new batch_size when ' \ - 'update_on_kvstore=True and when distributed `kvstore` is used.') - - self._optimizer.rescale_grad = rescale_grad + self._check_and_rescale_grad(rescale_grad) if not self._kv_initialized: self._init_kvstore() @@ -352,7 +389,7 @@ def update(self, batch_size, ignore_stale_grad=False): 'is not supported. Try setting `update_on_kvstore` ' \ 'to False when creating trainer.' - self._optimizer.rescale_grad = self._scale / batch_size + self._check_and_rescale_grad(self._scale / batch_size) self._update(ignore_stale_grad) def _update(self, ignore_stale_grad=False): @@ -387,10 +424,16 @@ def _update(self, ignore_stale_grad=False): def save_states(self, fname): """Saves trainer states (e.g. optimizer, momentum) to a file. + Parameters ---------- fname : str Path to output states file. + + Note + ---- + `optimizer.param_dict`, which contains Parameter information (such as + `lr_mult` and `wd_mult`) will not be saved. """ assert self._optimizer is not None @@ -414,6 +457,12 @@ def load_states(self, fname): ---------- fname : str Path to input states file. + + Note + ---- + `optimizer.param_dict`, which contains Parameter information (such as + `lr_mult` and `wd_mult`) will not be loaded from the file, but rather set + based on current Trainer's parameters. """ if not self._kv_initialized: self._init_kvstore() @@ -423,8 +472,6 @@ def load_states(self, fname): if self._update_on_kvstore: self._kvstore.load_optimizer_states(fname) self._optimizer = self._kvstore._updater.optimizer - param_dict = {i: param for i, param in enumerate(self._params)} - self._optimizer.param_dict = param_dict else: with open(fname, 'rb') as f: states = f.read() @@ -432,3 +479,5 @@ def load_states(self, fname): updater.set_states(states) updater.optimizer = self._updaters[0].optimizer self._optimizer = self._updaters[0].optimizer + param_dict = {i: param for i, param in enumerate(self._params)} + self._optimizer.param_dict = param_dict diff --git a/python/mxnet/model.py b/python/mxnet/model.py index 2666f8bbcd4f..38fe739154d5 100644 --- a/python/mxnet/model.py +++ b/python/mxnet/model.py @@ -62,6 +62,11 @@ def _create_sparse_kvstore(kvstore): ---------- kvstore : KVStore or str The kvstore. + + Returns + ------- + kvstore : KVStore + update_on_kvstore : bool. Always True. """ # always update on kvstore update_on_kvstore = True diff --git a/python/mxnet/optimizer/optimizer.py b/python/mxnet/optimizer/optimizer.py index a085b6fe2ef6..ba16132ab084 100644 --- a/python/mxnet/optimizer/optimizer.py +++ b/python/mxnet/optimizer/optimizer.py @@ -43,33 +43,33 @@ class Optimizer(object): Parameters ---------- - rescale_grad : float, optional + rescale_grad : float, optional, default 1.0 Multiply the gradient with `rescale_grad` before updating. Often choose to be ``1.0/batch_size``. - param_idx2name : dict from int to string, optional + param_idx2name : dict from int to string, optional, default None A dictionary that maps int index to string name. - clip_gradient : float, optional + clip_gradient : float, optional, default None Clip the gradient by projecting onto the box ``[-clip_gradient, clip_gradient]``. - learning_rate : float, optional + learning_rate : float, optional, default 0.01 The initial learning rate. - lr_scheduler : LRScheduler, optional + lr_scheduler : LRScheduler, optional, default None The learning rate scheduler. - wd : float, optional + wd : float, optional, default 0.0 The weight decay (or L2 regularization) coefficient. Modifies objective by adding a penalty for having large weights. - sym: Symbol, optional + sym: Symbol, optional, default None The Symbol this optimizer is applying to. - begin_num_update : int, optional + begin_num_update : int, optional, default 0 The initial number of updates. - multi_precision : bool, optional + multi_precision : bool, optional, default False Flag to control the internal precision of the optimizer.:: False: results in using the same precision as the weights (default), @@ -77,6 +77,10 @@ class Optimizer(object): in 32-bit precision even if actual weights used in the model have lower precision. Turning this on can improve convergence and accuracy when training with float16. + param_dict : dict of int -> gluon.Parameter, default None + Dictionary of parameter index to gluon.Parameter, used to lookup parameter attributes + such as lr_mult, wd_mult, etc. param_dict shall not be deep copied. + Properties ---------- learning_rate : float diff --git a/tests/nightly/dist_async_kvstore.py b/tests/nightly/dist_async_kvstore.py index 3e400eafa045..b990b6b3f13e 100644 --- a/tests/nightly/dist_async_kvstore.py +++ b/tests/nightly/dist_async_kvstore.py @@ -27,22 +27,26 @@ nworker = kv.num_workers def test_gluon_trainer_type(): - def check_trainer_kv_update(update_on_kv): + def check_trainer_kv_update(weight_stype, update_on_kv): params = mx.gluon.ParameterDict() - x = params.get('x', shape=(10,1), lr_mult=1.0) + x = params.get('x', shape=(10,1), lr_mult=1.0, stype=weight_stype) params.initialize(ctx=[mx.cpu(0), mx.cpu(1)], init='zeros') try: - trainer = mx.gluon.Trainer(params, 'sgd', {'learning_rate': 0.1}, kvstore=kv, update_on_kvstore=update_on_kv) + trainer = mx.gluon.Trainer(params, 'sgd', {'learning_rate': 0.1}, + kvstore=kv, update_on_kvstore=update_on_kv) trainer._init_kvstore() assert trainer._kv_initialized assert trainer._update_on_kvstore is True except ValueError: assert update_on_kv is False - check_trainer_kv_update(False) - check_trainer_kv_update(True) - check_trainer_kv_update(None) + check_trainer_kv_update('default', False) + check_trainer_kv_update('default', True) + check_trainer_kv_update('default', None) + check_trainer_kv_update('row_sparse', False) + check_trainer_kv_update('row_sparse', True) + check_trainer_kv_update('row_sparse', None) print('worker ' + str(my_rank) + ' passed test_gluon_trainer_type') if __name__ == "__main__": - test_gluon_trainer_type() \ No newline at end of file + test_gluon_trainer_type() diff --git a/tests/nightly/dist_sync_kvstore.py b/tests/nightly/dist_sync_kvstore.py index 861b85913ac8..4523a361cf88 100644 --- a/tests/nightly/dist_sync_kvstore.py +++ b/tests/nightly/dist_sync_kvstore.py @@ -376,18 +376,26 @@ def check_invalid_pull(): check_invalid_pull() def test_gluon_trainer_type(): - def check_trainer_kv_type(stype, grad_stype, update_on_kv): + def check_trainer_kv_type(stype, grad_stype, update_on_kv, expected): params = mx.gluon.ParameterDict() x = params.get('x', shape=(10,1), lr_mult=1.0, stype=stype, grad_stype=grad_stype) params.initialize(ctx=[mx.cpu(0), mx.cpu(1)], init='zeros') - trainer = mx.gluon.Trainer(params, 'sgd', {'learning_rate': 0.1}, kvstore=kv) - trainer._init_kvstore() - assert trainer._kv_initialized - assert trainer._update_on_kvstore is update_on_kv - - check_trainer_kv_type('default', 'default', False) - check_trainer_kv_type('default', 'row_sparse', True) - check_trainer_kv_type('row_sparse', 'row_sparse', True) + trainer = mx.gluon.Trainer(params, 'sgd', {'learning_rate': 0.1}, + kvstore=kv, update_on_kvstore=update_on_kv) + try: + trainer._init_kvstore() + assert trainer._kv_initialized + assert trainer._update_on_kvstore is expected + except Exception as err: + assert isinstance(err, expected) + + check_trainer_kv_type('default', 'default', None, True) + check_trainer_kv_type('default', 'default', True, True) + check_trainer_kv_type('default', 'default', False, False) + check_trainer_kv_type('default', 'row_sparse', None, True) + check_trainer_kv_type('default', 'row_sparse', False, ValueError) + check_trainer_kv_type('row_sparse', 'row_sparse', None, True) + check_trainer_kv_type('row_sparse', 'row_sparse', False, ValueError) print('worker ' + str(my_rank) + ' passed test_gluon_trainer_type') def test_gluon_trainer_step(): diff --git a/tests/python/unittest/test_gluon_trainer.py b/tests/python/unittest/test_gluon_trainer.py index b4bfe4c47f00..985c38c31356 100644 --- a/tests/python/unittest/test_gluon_trainer.py +++ b/tests/python/unittest/test_gluon_trainer.py @@ -55,16 +55,15 @@ def dict_equ(a, b): y.backward() trainer.step(1) + assert trainer._optimizer.param_dict == trainer._optimizer.param_dict assert (x.data(mx.cpu(1)).asnumpy() == -2).all() x.lr_mult = 0.5 - with mx.autograd.record(): for w in x.list_data(): y = w + 1 y.backward() trainer.step(1) - assert (x.data(mx.cpu(1)).asnumpy() == -4).all() trainer.save_states('test_trainer.states') @@ -212,28 +211,74 @@ def check_trainer_reset_kv(kv): @with_seed() def test_trainer_sparse_kv(): - def check_trainer_sparse_kv(kv, stype, grad_stype, update_on_kv): + def check_trainer_sparse_kv(kv, stype, grad_stype, update_on_kv, expected): params = gluon.ParameterDict() x = params.get('x', shape=(10,1), lr_mult=1.0, stype=stype, grad_stype=grad_stype) params.initialize(ctx=[mx.cpu(0), mx.cpu(1)], init='zeros') - trainer = gluon.Trainer(params, 'sgd', {'learning_rate': 0.1}, kvstore=kv) + trainer = gluon.Trainer(params, 'sgd', {'learning_rate': 0.1}, + kvstore=kv, update_on_kvstore=update_on_kv) all_rows = mx.nd.arange(0, 10, ctx=mx.cpu(0)) - ws = x.list_data() if stype == 'default' else x.list_row_sparse_data(all_rows) + try: + ws = x.list_data() if stype == 'default' else x.list_row_sparse_data(all_rows) + with mx.autograd.record(): + for w in ws: + y = w + 1 + y.backward() + trainer.step(1) + assert trainer._kvstore.type == kv + assert trainer._kv_initialized + assert trainer._update_on_kvstore is expected + # the updated parameter should be based on the loaded checkpoint + mx.nd.waitall() + updated_w = x.data(mx.cpu(0)) if stype == 'default' else x.row_sparse_data(all_rows) + assert (updated_w == -0.2).asnumpy().all() + except Exception as err: + assert isinstance(err, expected) + + kvs = ['local', 'device'] + for kv in kvs: + check_trainer_sparse_kv(kv, 'default', 'default', True, True) + check_trainer_sparse_kv(kv, 'default', 'default', False, False) + check_trainer_sparse_kv(kv, 'default', 'default', None, True) + check_trainer_sparse_kv(kv, 'default', 'row_sparse', None, False) + check_trainer_sparse_kv(kv, 'default', 'row_sparse', True, True) + check_trainer_sparse_kv(kv, 'default', 'row_sparse', False, False) + check_trainer_sparse_kv(kv, 'row_sparse', 'row_sparse', None, True) + check_trainer_sparse_kv(kv, 'row_sparse', 'row_sparse', False, ValueError) + +@with_seed() +def test_trainer_lr_sched(): + x = gluon.Parameter('x', shape=(10,)) + x.initialize(ctx=[mx.cpu(0), mx.cpu(1)], init='zeros') + freq = 2 + factor = 0.1 + lr = 1 + lr_sched = mx.lr_scheduler.FactorScheduler(freq, factor=factor, base_lr=lr) + trainer = gluon.Trainer([x], 'sgd', {'learning_rate': lr, 'lr_scheduler': lr_sched}) + for i in range(10): with mx.autograd.record(): - for w in ws: + for w in x.list_data(): y = w + 1 y.backward() trainer.step(1) - assert trainer._kvstore.type == kv - assert trainer._kv_initialized - assert trainer._update_on_kvstore is update_on_kv - # the updated parameter should be based on the loaded checkpoint - mx.nd.waitall() - updated_w = x.data(mx.cpu(0)) if stype == 'default' else x.row_sparse_data(all_rows) - assert (updated_w == -0.2).asnumpy().all() + if i % freq == 0: + assert trainer.learning_rate == lr, (lr, trainer.learning_rate, i) + lr *= factor + mx.nd.waitall() - kvs = ['local', 'device'] - for kv in kvs: - check_trainer_sparse_kv(kv, 'default', 'default', True) - check_trainer_sparse_kv(kv, 'default', 'row_sparse', False) - check_trainer_sparse_kv(kv, 'row_sparse', 'row_sparse', True) +@with_seed() +def test_trainer_invalid_lr_sched(): + x = gluon.Parameter('x', shape=(10,)) + x.initialize(ctx=[mx.cpu(0), mx.cpu(1)], init='zeros') + freq = 2 + factor = 0.1 + lr = 1 + lr_sched = mx.lr_scheduler.FactorScheduler(freq, factor=factor, base_lr=lr) + invalid_trainer = gluon.Trainer([x], 'sgd', {'learning_rate': lr, 'lr_scheduler': lr_sched}, + update_on_kvstore=False) + with mx.autograd.record(): + for w in x.list_data(): + y = w + 1 + y.backward() + assert_raises(ValueError, invalid_trainer.step, 1) + mx.nd.waitall()