-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgeseir_forecast.m
807 lines (592 loc) · 28.4 KB
/
geseir_forecast.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
% seir_forecast() forecasts a generalized SEIR model n days.
% Based on E. Cheynet's work [1].
%
% References:
% [1] https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-and-computation
%
% Version: 001
% Date: 2020/04/02
% Author: Rodrigo Gonzalez <rodralez@frm.utn.edu.ar>
% URL: /~https://github.com/rodralez/covid-19
%
% The fitting is here more challenging than in Example 1 because the term
% "Confirmed patient" used in the database does not precise whether they have
% been quarantined or not. In a previous version of the submision (version <1.5)
% , the infectious cases were erroneously used instead of the quarantined cases.
if (~exist('ITERATIVE','var')), ITERATIVE = 'OFF'; end
if strcmp( ITERATIVE, 'OFF' )
clear
close all
clc
if (~exist('ITERATIVE','var')), ITERATIVE = 'OFF'; end
end
if (~exist('ENGLISH','var')), ENGLISH = 'OFF'; end
if (~exist('PEAK','var')), PEAK = 'OFF'; end
addpath ./
addpath /home/rodralez/my/investigacion/work-in-progress/covid-19/matlab/
addpath ./num2sip/
%% Cases
% S(t): susceptible cases,
% P(t): insusceptible cases,
% E(t): exposed cases(infected but not yet be infectious, in a latent period),
% I(t): infectious cases(with infectious capacity and not yet be quarantined),
% Q(t): quarantinedcases(confirmed and infected),
% R(t): recovered cases and
% D(t): % closed cases(or death
%% Rates
% alpha: protection rate,
% beta: infection rate,
% gamma: average latent time,
% delta: average quarantine time,
% lambda: cure rate, and
% kappa: mortalityrate, separately
%% COUNTRY
Province = '';
% Province = 'CABA';
% Country = 'Argentina';
% Country = 'Ecuador';
% Country = 'Brazil';
Country = 'Chile';
% Country = 'Uruguay';
% Country = 'United Kingdom';
% Country = 'Spain';
% Country = 'Italy';
% Country = 'US';
% Country = 'Sweden';
% Country = 'Norway';
% Country = 'France';
% Country = 'Belgium';
% Country = 'Germany';
% Country = 'Turkey';
% Country = 'Singapore';
% Country = 'Korea, South';
% Country = 'China';
% Province = 'Hubei';
%% SIMULATION CONFIG
if strcmp( ITERATIVE, 'OFF' )
FIT_UNTIL = datetime(2020, 5, 5);
FIT_FROM = FIT_UNTIL - 14;
% % FIT_FROM = datetime(2020, 3, 1);
FORECAST_DAYS = 15; % DAYS TO FORECAST
% FORECAST_DAYS = 90; % DAYS TO FORECAST
% PEAK = 'ON'
% MODEL_EVAL = 'ON';
% FIT_FROM = datetime(2020, X, X);
% FIT_UNTIL = FIT_FROM + 14;
% FIT_UNTIL = datetime(2020, 5, 2);
% FIT_FROM = FIT_UNTIL - 24;
% FORECAST_DAYS = days (datetime(2020, 5, 1) - FIT_UNTIL );
end
% ENGLISH = 'ON'
source = 'HOPKINS';
% source = 'MINSAL';
% source_input = 'online' ;
source_input = 'offline' ;
if (~exist('MODEL_EVAL','var')), MODEL_EVAL = 'OFF'; end
%% GET DATA JH
[tableConfirmed_jh,tableDeaths_jh,tableRecovered_jh,time_jh] = get_covid_global_hopkins ( source_input, './hopkins/' );
% [tableConfirmed,tableDeaths,tableRecovered,time] = get_covid_us_hopkins ( source, './hopkins/' );
% FIND COUNTRY
[indC, indR, indD, Npop] = find_country (tableConfirmed_jh,tableRecovered_jh,tableDeaths_jh, Country, Province);
Confirmed_jh = table2array(tableConfirmed_jh(indC, 4:end));
Deaths_jh = table2array(tableDeaths_jh(indD, 4:end));
if ~isempty(tableRecovered_jh)
Recovered_jh = table2array(tableRecovered_jh(indR, 4:end));
end
%% GET DATA MINSAL
if strcmp(Country, 'Argentina')
[tableConfirmed_ar,tableDeaths_ar,tableRecovered_ar,time_ar] = get_covid_argentina( source_input, './csv/', Recovered_jh );
% FIND COUNTRY
[indC_ar, indR_ar, indD_ar, Npop_ar] = find_country (tableConfirmed_ar,tableRecovered_ar,tableDeaths_ar, Country, Province);
compare_hopkins_minsal(tableConfirmed_jh,tableRecovered_jh,tableDeaths_jh, time_jh, tableConfirmed_ar,tableRecovered_ar,tableDeaths_ar, time_ar)
Confirmed_ar = table2array(tableConfirmed_ar(indC_ar, 4:end));
Deaths_ar = table2array(tableDeaths_ar(indD_ar, 4:end));
if ~isempty(tableRecovered_jh)
Recovered_ar = table2array(tableRecovered_ar(indR_ar, 4:end));
end
minNum = 50;
time_ar(Confirmed_ar <= minNum)= [];
if ~isempty(tableRecovered_ar)
Recovered_ar(Confirmed_ar <= minNum)=[];
end
Deaths_ar(Confirmed_ar <= minNum)=[];
Confirmed_ar(Confirmed_ar <= minNum)=[];
end
% FIND FIRST 50 CASES
% If the number of confirmed Confirmed cases is small, it is difficult to know whether
% the quarantine has been rigorously applied or not. In addition, this
% suggests that the number of infectious is much larger than the number of
% confirmed cases
minNum = 50;
time_jh(Confirmed_jh <= minNum)= [];
if ~isempty(tableRecovered_jh)
Recovered_jh(Confirmed_jh <= minNum)=[];
end
Deaths_jh(Confirmed_jh <= minNum)=[];
Confirmed_jh(Confirmed_jh <= minNum)=[];
%% CHOOSE DATASET
if strcmp(source, 'HOPKINS')
Confirmed = Confirmed_jh;
Recovered = Recovered_jh;
Deaths = Deaths_jh;
time = time_jh;
source_str = sprintf( 'Johns Hopkins CSSE');
elseif strcmp(source, 'MINSAL')
Confirmed = Confirmed_ar;
Recovered = Recovered_ar;
Deaths = Deaths_ar;
time = time_ar;
source_str = sprintf( 'Ministerio de Salud');
else
error('No data source selected!')
end
%% FITTING
tidx = datefind( FIT_FROM, time);
tfdx = datefind( FIT_UNTIL, time);
tfit = time >= FIT_FROM;
tfit = time <= FIT_UNTIL & tfit;
% Initial conditions
C0 = Confirmed(tfit);
E0 = C0(1) ; % Initial number of exposed cases. Unknown but unlikely to be zero.
I0 = C0(1) ; % Initial number of infectious cases. Unknown but unlikely to be zero.
param_fit = my_fit_SEIQRDP(Confirmed(tfit), Recovered(tfit), Deaths(tfit), Npop, E0, I0, time(tfit));
Active = Confirmed - Recovered - Deaths;
FIT_DAYS = length(time(tfit));
%% FORECAST Simulate the epidemy outbreak based on the fitted parameters
% Initial conditions
C0 = Confirmed(tfit);
E0 = C0(1) ; % Initial number of exposed cases. Unknown but unlikely to be zero.
I0 = C0(1) ; % Initial number of infectious cases. Unknown but unlikely to be zero.
R0 = Recovered(tfit);
D0 = Deaths(tfit);
R0 = R0(1);
D0 = D0(1);
Q0 = C0(1)- R0 - D0;
dt = 1/24; % time step, 1 hour
time_adj = time(tfit);
time_sim = datetime( time_adj(1) ): dt : datetime( time_adj(end) + FORECAST_DAYS );
[S1,E1,I1,Q1,R1,D1,P1] = my_SEIQRDP(param_fit, Npop, E0, I0, Q0, R0, D0, time_sim, dt);
C1 = Q1 + R1 + D1 ;
%% DOUBLING ANALYSYS
% fdx = find ( c1 <= ceil( C1(end) / 2 ), 1, 'last');
fdx = find ( Q1 >= floor( Q1(end) / 2 ), 1, 'first');
doubling_q = round( datenum ( time_sim(end)- time_sim(fdx) ) );
fdx = find ( D1 >= floor( D1(end) / 2 ), 1, 'first');
doubling_d = round( datenum ( time_sim(end)- time_sim(fdx) ) );
if isempty(doubling_q | doubling_d)
warning ('doubling is empty.')
end
%% PRINT
if strcmp( ITERATIVE, 'OFF' )
fprintf(' *** Country: %s ***\n\n', Country );
fprintf(' Fiting time series starts on %s. \n', datestr(time(1)) );
fprintf(' Fiting time series stops on %s. \n' , datestr(time(end)) );
fprintf(' Forecasting time series stops on %s. \n', datestr(time_sim(end)) );
fprintf(' Forecasting days are %d.\n', FORECAST_DAYS );
if strcmp (ENGLISH, 'ON')
model_str = sprintf( 'It is forecasted on %s:', datestr( time_sim(end), 'mmmm dd' ) );
c_fore_str = sprintf( '%d confirmed cases (%+d)', round( C1(end) ) , round( C1(end) - Confirmed(end) ) );
q_fore_str = sprintf( '%d active cases (%+d)', round( Q1(end) ) , round( Q1(end) - Active(end) ) );
r_fore_str = sprintf( '%d recoveries (%+d)', round( R1(end) ) , round( R1(end) - Recovered(end) ) );
d_fore_str = sprintf( '%d deaths (%+d)', round( D1(end) ) , round( D1(end) - Deaths(end) ) );
double_q_str = sprintf( 'Active cases are doubled in %d days', doubling_q );
double_d_str = sprintf( 'Deaths are doubled in %d days', doubling_d );
else
model_str = sprintf( 'Se proyecta para el %s:', datestr( time_sim(end), 'dd/mm/yy' ) );
c_fore_str = sprintf( '%d casos confirmados (%+d)', round( C1(end) ) , round( C1(end) - Confirmed(end) ) );
q_fore_str = sprintf( '%d casos activos (%+d)', round( Q1(end) ) , round( Q1(end) - Active(end) ) );
r_fore_str = sprintf( '%d recuperados (%+d)', round( R1(end) ) , round( R1(end) - Recovered(end) ) );
d_fore_str = sprintf( '%d fallecidos (%+d)', round( D1(end) ) , round( D1(end) - Deaths(end) ) );
double_q_str = sprintf( 'Activos se duplican cada %d días', doubling_q );
double_d_str = sprintf( 'Fallecidos se duplican cada %d días', doubling_d );
end
i_fore_str = sprintf( '%d potential active cases', round( Q1(end) + I1(end) ) );
Q_fore_str = sprintf( 'Models predicts %d active cases on %s', round( ( Q1(end)) ), datestr( time_sim(end) ) );
N_fore_str = sprintf( 'Models predicts new %d active cases on %s', round( ( Q1(end) ) - Active(end) ), datestr( time_sim(end) ) );
I_fore_str = sprintf( 'Models predicts %d infected on %s', round( I1(end) ), datestr( time_sim(end) ) );
% ro_str = sprintf( 'Ro: %.2f', BRN );
alpha_str = sprintf( 'alpha : %.2f', param_fit.alpha );
beta_str = sprintf( 'beta: %.2f', param_fit.beta );
gamma_str = sprintf( 'gamma^-1: %.1f days', 1/param_fit.gamma);
delta_str = sprintf( 'delta^-1: %.1f days', 1/param_fit.delta);
lambda_str = sprintf( 'Recovery rate: [%f %f]', param_fit.lambda(1), param_fit.lambda(2) );
kappa_str = sprintf( 'Death rate: [%f %f]', param_fit.kappa(1), param_fit.kappa(2) );
fprintf( '\n %s \n', Q_fore_str );
fprintf( ' %s \n', I_fore_str );
fprintf( ' %s \n', N_fore_str );
% fprintf( ' %s \n', ro_str );
fprintf( ' %s \n', alpha_str );
fprintf( ' %s \n', beta_str );
fprintf( ' %s \n', gamma_str );
fprintf( ' %s \n', delta_str );
fprintf( ' %s \n', lambda_str );
fprintf( ' %s \n', kappa_str );
fprintf( ' %s \n', double_q_str );
fprintf( ' %s \n', double_d_str );
end
%% PLOT
%--------------------------------------------------------------------------
% COLORS
%--------------------------------------------------------------------------
blue = [0, 0.4470, 0.7410];
orange = [0.8500, 0.3250, 0.0980];
yellow = [0.9290, 0.6940, 0.1250] ;
purple = [0.4940, 0.1840, 0.5560];
green = [0.4660, 0.6740, 0.1880];
blue_light = [0.3010, 0.7450, 0.9330] ;
gray = ones(1,3) * 0.5;
red_dark = [0.6350, 0.0780, 0.1840] ;
red = [1 0 0];
%--------------------------------------------------------------------------
% FONT SIZE, LINE WIDTH, POINT WIDTH
%--------------------------------------------------------------------------
font_title = 23;
font_label = 20;
font_tick = 17;
font_legend = 15;
font_point = 13;
line_width = 2.5;
line_width_pt= 2;
mks = 9;
%--------------------------------------------------------------------------
% VECTOR INDEX FOR FIGURE
%--------------------------------------------------------------------------
fodx = time_sim > FIT_UNTIL;
fopx = contains( cellstr( datestr( time_sim ) ), '00:00:00') & fodx';
fidx = time_sim <= FIT_UNTIL;
time_fore_pt = time_sim (fopx);
c_fore_pt = C1 (fopx);
q_fore_pt = Q1 (fopx);
r_fore_pt = R1 (fopx);
d_fore_pt = D1 (fopx);
if strcmp( ITERATIVE, 'OFF' )
%--------------------------------------------------------------------------
figure
%--------------------------------------------------------------------------
% FITING, LINES
%--------------------------------------------------------------------------
% c1 = semilogy(time_sim (fidx), C1 (fidx), 'color', green, 'LineWidth', line_width);
q1 = semilogy(time_sim (fidx), Q1 (fidx), 'color', red_dark, 'LineWidth', line_width);
hold on
r1 = semilogy(time_sim (fidx), R1 (fidx), 'color', blue, 'LineWidth', line_width);
d1 = semilogy(time_sim (fidx), D1 (fidx), 'k', 'LineWidth', line_width);
%--------------------------------------------------------------------------
% PEAK LINE
%--------------------------------------------------------------------------
if strcmp (PEAK, 'ON')
qdx = find (Q1 == max(Q1));
adx = find (Active == max(Active));
if max(Q1) > max(Active )
peak_max = max(Q1);
peak_time = time_sim (qdx);
else
peak_max = max(Active);
peak_time = time (adx);
end
line([peak_time peak_time], [1 peak_max], 'color', red, 'linewidth', line_width, 'LineStyle', '--');
semilogy(peak_time, peak_max, 'color', red, 'Marker','d', 'LineStyle', 'none', 'LineWidth', line_width_pt,'MarkerSize', mks+3);
if strcmp (ENGLISH, 'OFF')
peak_str = sprintf( 'Pico el %s con %s casos activos', datestr( peak_time, 'dd/mm' ), num2sip(round( peak_max ) , 3) ) ;
else
peak_str = sprintf( 'Peak with %s active cases on %s', num2sip(round( peak_max ) , 3), datestr( peak_time, 'mmmm dd' ) ) ;
end
fprintf(' %s \n', peak_str )
end
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% FORECASTING, POINTS
%--------------------------------------------------------------------------
% cp = semilogy(time_sim (fopx), C1(fopx), 'color', green, 'Marker','x', 'LineStyle', 'none', 'LineWidth', line_width_pt,'MarkerSize', mks);
qp = semilogy(time_sim (fopx), Q1(fopx), 'color', red_dark, 'Marker','x', 'LineStyle', 'none', 'LineWidth', line_width_pt,'MarkerSize', mks);
rp = semilogy(time_sim (fopx), R1(fopx), 'color', blue, 'Marker','x', 'LineStyle', 'none', 'LineWidth', line_width_pt,'MarkerSize', mks);
dp = semilogy(time_sim (fopx), D1(fopx), 'color', 'black', 'Marker','x', 'LineStyle', 'none', 'LineWidth', line_width_pt,'MarkerSize', mks);
% cr = semilogy(time, Confirmed, 'color', green, 'Marker', 'o', 'LineStyle', 'none', 'LineWidth', line_width_pt, 'MarkerSize', mks);
qr = semilogy(time, Active, 'color', red_dark, 'Marker', 'o', 'LineStyle', 'none', 'LineWidth', line_width_pt, 'MarkerSize', mks);
rr = semilogy(time, Recovered, 'color', blue, 'Marker', 'o', 'LineStyle', 'none', 'LineWidth', line_width_pt, 'MarkerSize', mks);
dr = semilogy(time, Deaths, 'color', 'black', 'Marker', 'o', 'LineStyle', 'none', 'LineWidth', line_width_pt, 'MarkerSize', mks);
grid on
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% AXES PROPIETIES
%--------------------------------------------------------------------------
if strcmp (ENGLISH, 'ON')
yl = ylabel('Number of cases');
xl = xlabel('Time (days)');
else
yl = ylabel('Número de casos');
xl = xlabel('Tiempo (días)');
end
set(gcf,'color','w')
% set(gca,'yscale','lin')
set(gca,'yscale','log')
xlim([ time(1) time_sim(end) ])
if max(R1) > max(Q1)
ylim([ 1 max(R1)*3 ]);
else
ylim([ 1 max(Q1)*3 ]);
end
set(gca, 'XTickMode', 'manual', 'YTickMode', 'auto', 'XTick', time(1):4:time_sim(end), 'FontSize', font_tick, 'XTickLabelRotation', 45);
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% TITLE
%--------------------------------------------------------------------------
if (strcmp(Province, ''))
country_str = Country;
else
country_str = [Province,' (',Country,')'];
end
if strcmp (ENGLISH, 'ON')
date_str = datestr(time(tfdx), 'mmmm dd');
if strcmp (MODEL_EVAL, 'OFF')
title_type = 'GeSEIR model for COVID-19 forecasting';
else
title_type = 'GeSEIR model for COVID-19 evaluation';
end
sub_title_srt = ['\fontsize{20}\color{gray}\rm Source: ', source_str, '.'];
switch (country_str)
case 'Korea, South', country_str = 'South Korea'; Country = 'South Korea';
end
title_srt = sprintf('%s, %s.\nFitted with %d days, forecasted %d days from %s.', ...
country_str, title_type, FIT_DAYS, FORECAST_DAYS, date_str );
else
date_str = datestr(time(tfdx), 'dd/mm/yy');
switch (country_str)
case 'Spain', country_str = 'España';
case 'Italy', country_str = 'Italia';
case 'US', country_str = 'EE.UU.';
case 'Korea, South', country_str = 'Corea del Sur'; Country = 'South Korea';
end
if strcmp (MODEL_EVAL, 'OFF')
title_type = 'Modelo GeSEIR para la predicción de COVID-19';
else
title_type = 'Evaluación del modelo GeSEIR para la predicción de COVID-19';
end
sub_title_srt = ['\fontsize{20}\color{gray}\rm Fuente: ', source_str, '.'];
title_srt = sprintf('%s, %s.\nAjuste con %d días, proyección de %d días desde %s.', ...
country_str, title_type, FIT_DAYS, FORECAST_DAYS, date_str );
end
tl = title( { title_srt ; sub_title_srt } );
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% Points with value labels
%--------------------------------------------------------------------------
if FORECAST_DAYS < 30
P = 5;
else
P = 7;
end
hght = 1.75;
delay = 0; % -1/2
if strcmp (MODEL_EVAL, 'OFF')
for i = 1 : P : size(Active, 2)
text( time(i)+delay , Active(i)*hght , sprintf('%s', num2sip( Active(i) , 3)), 'FontSize', font_point, 'color', red_dark ) ;
end
for i = 1 : P : size(Recovered, 2)
text( time(i)+delay, Recovered(i)/hght , sprintf('%s', num2sip(Recovered(i) , 3)), 'FontSize', font_point, 'color', blue );
end
for i = 1 : P : size(Deaths, 2)
text( time(i)+delay, Deaths(i)/hght , sprintf('%s', num2sip(Deaths(i) , 3)), 'FontSize', font_point, 'color', 'black' );
end
S = P;
for i = S : P : size(time_fore_pt, 2)
text( time_fore_pt(i)+delay, q_fore_pt(i)*hght , sprintf('%s', num2sip(round( q_fore_pt(i)) , 3)), 'FontSize', font_point, 'Color', red_dark);
end
for i = S : P : size(time_fore_pt, 2)
text(time_fore_pt(i)+delay, r_fore_pt(i)/hght , sprintf('%s', num2sip(round( r_fore_pt(i)) , 3)), 'FontSize', font_point, 'Color', blue);
end
for i = S : P : size(time_fore_pt, 2)
text(time_fore_pt(i)+delay, d_fore_pt(i)/hght , sprintf('%s', num2sip(round( d_fore_pt(i)) , 3)), 'FontSize', font_point, 'Color', 'black');
end
% Print last vector element
text( time_fore_pt(end)+delay, q_fore_pt(end)*hght , sprintf('%s', num2sip(round( q_fore_pt(end)) , 3)), 'FontSize', font_point, 'Color', red_dark);
text( time_fore_pt(end)+delay, r_fore_pt(end)/hght , sprintf('%s', num2sip(round( r_fore_pt(end)) , 3)), 'FontSize', font_point, 'Color', blue);
text( time_fore_pt(end)+delay, d_fore_pt(end)/hght , sprintf('%s', num2sip(round( d_fore_pt(end)) , 3)), 'FontSize', font_point, 'Color', 'black');
else
%--------------------------------------------------------------------------
% Points with errors percent labels
%--------------------------------------------------------------------------
P = 2;
for i = 1 : P : size(q_fore_pt, 2)
if ( tfdx+i <= size (Active, 2))
error = (round(q_fore_pt(i)) - Active(tfdx+i)) / Active(tfdx+i) * 100;
text( time_fore_pt(i)+delay, q_fore_pt(i)*hght , sprintf('%.0f%%', error) , 'FontSize', font_point, 'color', red_dark ) ;
end
end
for i = 1 : P : size(r_fore_pt, 2)
if ( tfdx+i <= size (Recovered, 2))
error = (round(r_fore_pt(i)) - Recovered(tfdx+i)) / Recovered(tfdx+i) * 100;
text( time_fore_pt(i)+delay, r_fore_pt(i)/hght , sprintf('%.0f%%', error) , 'FontSize', font_point, 'color', blue );
end
end
for i = 1 : P : size(d_fore_pt, 2)
if ( tfdx+i <= size (Deaths, 2))
error = (round(d_fore_pt(i)) - Deaths(tfdx+i)) / Deaths(tfdx+i) * 100;
text( time_fore_pt(i)+delay, d_fore_pt(i)/hght , sprintf('%.0f%%', error) , 'FontSize', font_point, 'color', 'black' );
end
end
end
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% LEGEND
%--------------------------------------------------------------------------
if strcmp (ENGLISH, 'ON')
leg = {
'Active (fitted)', ...
'Recoveries (fitted)',...
'Deaths (fitted)',...
'Active (reported)', ...
'Recoveries (reported)',...
'Deaths (reported)'};
else
leg = {
'Activos (ajustado)', ...
'Recuperados (ajustado)',...
'Fallecidos (ajustado)',...
'Activos (reportados)', ...
'Recuperados (reportados)',...
'Fallecidos (reportados)'};
end
ll = legend( [q1, r1, d1, qr, rr, dr], leg{:}, 'Location','SouthEast' ); % NorthWest
set(ll,'color','none');
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% TEXT BOX
%--------------------------------------------------------------------------
if strcmp (PEAK, 'OFF')
text_box = sprintf('%s\n * %s.\n * %s.\n * %s.\n * %s.\n * %s.', model_str, ...
q_fore_str, r_fore_str, d_fore_str, double_q_str, double_d_str);
else
text_box = sprintf('%s\n * %s.\n * %s.\n * %s.\n * %s.', model_str, ...
q_fore_str, r_fore_str, d_fore_str, peak_str);
end
al = annotation('textbox', [0.42, 0.26, 0.1, 0.1], 'string', text_box, ...
'LineStyle','-',...
'FontSize', font_legend,...
'FontName','Arial', ...
'FaceAlpha', 0.5, ...
'BackgroundColor', 'white');
% 'FontWeight','bold',...
%--------------------------------------------------------------------------
% SIGNATURE
%--------------------------------------------------------------------------
% Create textbox
annotation('textbox', [0.14 0.79 0.35 0.05],...
'Color', ones(1,3) * 0.50 ,...
'String',{'Rodrigo Gonzalez (Twitter @RGonzalez\_PhD)'},...
'LineStyle','none',...
'FontSize', font_legend ,...
'FontName','Arial', ...
'FaceAlpha', 0.5, ...
'BackgroundColor', 'white');
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% WATERMARK
%--------------------------------------------------------------------------
for i=1:3
x = 0.14 + i*0.15;
y = 0.79 - i*0.145;
annotation('textbox', [x y 0.35 0.05],...
'Color', ones(1,3) * 0.875 , ...
'String',{'Rodrigo Gonzalez (Twitter @RGonzalez\_PhD)'},...
'LineStyle','none',...
'FontSize', font_legend ,...
'FontName','Arial', ...
'FaceAlpha', 0.05, ...
'BackgroundColor', 'white');
end
%--------------------------------------------------------------------------
set(tl,'FontSize', font_title, 'FontName','Arial');
set(xl,'FontSize', font_label, 'FontName','Arial');
set(yl,'FontSize', font_label, 'FontName','Arial');
set(ll,'FontSize', font_legend, 'FontName','Arial');
set(al,'FontSize', font_legend, 'FontName','Arial');
hold off
%% SAVE FIGURE TO PNG FILE
Country = regexprep(Country, ' ', '_');
date_str = datestr( FIT_UNTIL , 'yyyy-mm-dd');
if strcmp (MODEL_EVAL, 'OFF')
file_name = sprintf('%s_covid-19_forecast_%s', Country, date_str );
else
file_name = sprintf('%s_covid-19_eval_%s', Country, date_str );
end
if strcmp (PEAK, 'ON')
file_name = [file_name,'_peak'];
end
file_str = sprintf('./png/%s.png', file_name );
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
saveas(gcf,file_str)
%% INFECTED FIGURE
%% PLOT INFECTED AND EXPOSED
% figure
%
% q1 = semilogy(time_sim (fidx), I1 (fidx), 'color', red_dark, 'LineWidth', line_width);
% hold on
% r1 = semilogy(time_sim (fidx), E1 (fidx), 'color', blue, 'LineWidth', line_width);
%
% grid on
%
% legend('INFECTED', 'EXPOSED')
%
% hold off
%% SAVE DATA TO CSV FILE
%--------------------------------------------------------------------------
% FITTING AND FORECASTING
%--------------------------------------------------------------------------
% lambda_str = sprintf( 'Recovery rate: [%f %f]', param_fit.lambda(1), param_fit.lambda(2) );
% kappa_str = sprintf( 'Death rate: [%f %f]', param_fit.kappa(1), param_fit.kappa(2) );
t = 0:size(time_sim, 2);
lambda = param_fit.lambda(1) * (1-exp(- param_fit.lambda(2) .* t));
kappa = param_fit.kappa(1) * exp(- param_fit.kappa(1) .* t);
file_str = sprintf('./csv/%s.csv', file_name );
fid = fopen(file_str, 'w');
fprintf(fid, '%s, %s, %s, %s, %s, %s, %s,\n', 'Date', 'Active', 'Recoveries', 'Deaths', 'Active+Infected', 'lambda', 'kappa') ; % Print the time string
for idx = 1:size(time_sim, 2) % Loop through each time/value row size(qq, 1)
fprintf(fid, '%s,', datestr ( time_sim(:, idx) , 31 ) ) ; % date
fprintf(fid, '%12.5f,', Q1(idx) ) ; %
fprintf(fid, '%12.5f,', R1(idx) ) ; %
fprintf(fid, '%12.5f,', D1(idx) ) ; %
fprintf(fid, '%12.5f,', Q1(idx)+I1(idx) ) ; %
fprintf(fid, '%12.5f,', lambda(idx) ) ; %
fprintf(fid, '%12.5f,', kappa(idx) ) ; %
fprintf(fid, '\n' ) ; % active
end
fclose(fid) ;
%--------------------------------------------------------------------------
% FITTING AND FORECASTING, LASTEST
%--------------------------------------------------------------------------
if strcmp (MODEL_EVAL, 'OFF')
cp_command = sprintf('cp %s ./csv/%s_covid-19_forecast_lastest.csv', file_str, Country );
ret = system(cp_command);
if ret ~= 0
error('cp error!');
end
end
%--------------------------------------------------------------------------
% REPORTED
%--------------------------------------------------------------------------
if strcmp (MODEL_EVAL, 'OFF')
file_name = sprintf('%s_covid-19_reported_%s', Country, date_str );
else
file_name = sprintf('%s_covid-19_reported_eval_%s', Country, date_str );
end
file_str = sprintf('./csv/%s.csv', file_name);
fid = fopen(file_str, 'w');
fprintf(fid, '%s, %s, %s, %s,\n', 'Date', 'Active', 'Recoveries', 'Deaths') ; % Print the time string
for idx = 1:size(time, 2) % Loop through each time/value row size(qq, 1)
fprintf(fid, '%s,', datestr ( time(1, idx) , 31 ) ) ; % date
fprintf(fid, '%12.5f,', Active(idx) ) ; % active
fprintf(fid, '%12.5f,', Recovered(idx) ) ; % active
fprintf(fid, '%12.5f,', Deaths(idx) ) ; % active
fprintf(fid, '\n' ) ; % active
end
%--------------------------------------------------------------------------
% REPORTED, LASTEST
%--------------------------------------------------------------------------
if strcmp (MODEL_EVAL, 'OFF')
cp_command = sprintf('cp %s ./csv/%s_covid-19_reported_lastest.csv', file_str, Country );
ret = system(cp_command);
if ret ~= 0
error('cp error!');
end
end
end