-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcollect_il_data.py
288 lines (264 loc) · 13.6 KB
/
collect_il_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import argparse
import json
import glob
import os
import numpy as np
import habitat
import habitat.sims
import habitat.sims.habitat_simulator
import joblib
import torch
from env_utils import *
from configs.default import get_config
from tqdm import tqdm
from habitat import make_dataset
from env_utils.make_env_utils import add_panoramic_camera
from utils.statics import GIBSON_TINY_TRAIN_SCENE, GIBSON_TINY_TEST_SCENE
os.environ['GLOG_minloglevel'] = "2"
os.environ['MAGNUM_LOG'] = "quiet"
import warnings
warnings.simplefilter("ignore", UserWarning)
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/TSGM.yaml", help="path to config yaml containing info about experiment")
parser.add_argument('--ep-per-env', type=int, default=200, help='number of episodes per environments')
parser.add_argument('--num-procs', type=int, default=1, help='number of processes to run simultaneously')
parser.add_argument('--num-goals', type=int, default=5, help='number of goals per episodes')
parser.add_argument('--split', type=str, default="train", choices=['train', 'val'], help='data split to use')
parser.add_argument('--data-dir', type=str, default="IL_data/gibson", help='directory to save the collected data')
parser.add_argument('--dataset', default='gibson', type=str)
parser.add_argument("--version", type=str, default="collect", help="name to save")
parser.add_argument('--task', default='imggoalnav', type=str)
parser.add_argument('--use-detector', action='store_true', default=False)
parser.add_argument('--fd', action='store_true', default=False)
parser.add_argument('--num-splits', type=int, default=1, help='number of processes to run simultaneously')
parser.add_argument('--split-idx', default=0, type=int)
parser.add_argument('--project-dir', default='.', type=str)
parser.add_argument('--mode', default='collect', type=str)
args = parser.parse_args()
def make_env_fn(config_env, rank):
config_env.defrost()
config_env.SEED = rank * 1121
config_env.freeze()
env = eval(config_env.ENV_NAME)(config=config_env)
env.seed(rank * 1121)
return env
def data_collect(config, DATA_DIR, space_id, tot_space_num, start_idx, num_episodes):
num_of_envs = args.num_procs
configs = []
gpu_ids = np.zeros(num_of_envs)
if torch.cuda.device_count() > 1:
gpu_ids[1:] = 1
for i in range(num_of_envs):
proc_config = config.clone()
proc_config.defrost()
task_config = proc_config.TASK_CONFIG
task_config.PROC_ID = i
task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = (int(gpu_ids[i]))
proc_config.freeze()
configs.append(proc_config)
envs = habitat.VectorEnv(
make_env_fn=make_env_fn,
env_fn_args=tuple(
tuple(
zip(configs, range(num_of_envs))
)
),
auto_reset_done=False
)
num_episodes = int(num_episodes)
episode = start_idx
episode_names = []
for idx in range(num_episodes):
space_name = config.TASK_CONFIG.DATASET.CONTENT_SCENES[0]
episode_name = '%s_%03d' % (space_name, idx)
episode_names.append(episode_name)
with tqdm(total=num_episodes) as pbar:
pbar.update(episode)
while True:
observations = envs.reset()
episodes = envs.current_episodes()
datas = [{'rgb': [], 'depth': [], 'position': [], 'rotation': [], 'action': [],
'target_idx': [], 'target_img': None, 'target_pose': None, 'distance': [],
'object': [], 'object_score': [], 'object_category': [], 'object_pose': [],
'target_object': None, 'target_object_score': None, 'target_object_pose': None, 'target_object_category': None,
} for _ in range(num_of_envs)]
step = 0
dones = envs.call(['get_episode_over'] * num_of_envs)
paused = [False] * num_of_envs
env_ind_states = np.arange(num_of_envs)
for i in range(num_of_envs):
datas[i]['target_object'] = []
datas[i]['target_object_score'] = []
datas[i]['target_object_pose'] = []
datas[i]['target_object_category'] = []
datas[i]['target_img'] = []
datas[i]['target_pose'] = []
for e in range(len(episodes[i].goals)):
datas[i]['target_object'].append(observations[i]['target_loc_object'][e])
datas[i]['target_object_score'].append(observations[i]['target_loc_object_score'][e])
datas[i]['target_object_pose'].append(observations[i]['target_loc_object_pose'][e])
datas[i]['target_object_category'].append(observations[i]['target_loc_object_category'][e])
datas[i]['target_img'].append(observations[i]['target_goal'][e])
datas[i]['target_pose'].append(episodes[i].goals[e].position)
past_alive_indices = np.where(np.array(paused) == False)
while (np.array(dones) == 0).any():
best_actions = np.array(envs.call(['get_best_action'] * num_of_envs))
curr_goal_indices = envs.call(['get_curr_goal_index'] * num_of_envs)
alive_indices = np.where(np.array(paused) == False)
past_obs = observations
best_actions[np.where(best_actions == None)] = 0
best_actions[np.where(envs.call(['get_episode_over'] * num_of_envs)) == 1] = 0
outputs = envs.step(best_actions)
observations, rewards, dones, infos = [
list(x) for x in zip(*outputs)
]
for i, j in enumerate(past_alive_indices[0]):
datas[j]['rgb'].append(past_obs[i]['panoramic_rgb'])
datas[j]['depth'].append(past_obs[i]['panoramic_depth'])
datas[j]['object'].append(past_obs[i]['object'])
datas[j]['object_pose'].append(past_obs[i]['object_pose'])
datas[j]['object_score'].append(past_obs[i]['object_score'])
datas[j]['object_category'].append(past_obs[i]['object_category'])
datas[j]['position'].append(past_obs[i]['position'])
datas[j]['rotation'].append(past_obs[i]['rotation'])
datas[j]['distance'].append(past_obs[i]['distance'])
if j in alive_indices[0]:
datas[j]['action'].append(best_actions[alive_indices[0].tolist().index(j)])
datas[j]['target_idx'].append(curr_goal_indices[alive_indices[0].tolist().index(j)])
try:
if j in alive_indices[0] and dones[alive_indices[0].tolist().index(j)] == 1:
ind = np.where(env_ind_states == j)
envs.pause_at(ind[0][0])
env_ind_states = np.delete(env_ind_states, ind)
paused[j] = True
continue
except:
pass
step += 1
past_alive_indices = alive_indices
envs.resume_all()
successes = envs.call(['get_success'] * num_of_envs)
for i in range(num_of_envs):
success = successes[i]
if success:
joblib.dump(datas[i], os.path.join(DATA_DIR, episode_names[episode] + '.dat.gz'))
episode += 1
pbar.update(1)
pbar.set_description('Total %05d, %s SPACE[%03d/%03d] %03d/%03d data collected' % (len(os.listdir(DATA_DIR)),
space_name,
space_id + 1,
tot_space_num,
len(glob.glob(os.path.join(DATA_DIR, space_name) + '*')),
num_episodes))
if episode >= num_episodes:
break
if episode >= num_episodes:
break
if episode >= num_episodes:
break
envs.close()
def main():
split = args.split
DATA_DIR = os.path.join(args.project_dir, args.data_dir)
if not os.path.exists(DATA_DIR): os.mkdir(DATA_DIR)
DATA_DIR = os.path.join(DATA_DIR, split)
if not os.path.exists(DATA_DIR): os.mkdir(DATA_DIR)
config = get_config(args.config, base_task_config_path="./configs/{}_{}.yaml".format(args.task, args.dataset), arguments=vars(args))
config.defrost()
config.noisy_actuation = True
if args.num_procs > 0:
config.NUM_PROCESSES = args.num_procs
config.USE_DETECTOR = config.TASK_CONFIG.USE_DETECTOR = args.use_detector
config.detector_th = config.TASK_CONFIG.detector_th = 0.01
config.DATASET_NAME = args.dataset
config.TASK_CONFIG.DATASET.DATASET_NAME = args.dataset
config.TASK_CONFIG.TASK.POSSIBLE_ACTIONS = ["STOP", "MOVE_FORWARD", "TURN_LEFT", "TURN_RIGHT"]
config.TASK_CONFIG.TASK.MEASUREMENTS = ["GOAL_INDEX"] + config.TASK_CONFIG.TASK.MEASUREMENTS
config.TASK_CONFIG.TASK.GOAL_INDEX = config.TASK_CONFIG.TASK.SPL.clone()
config.TASK_CONFIG.TASK.GOAL_INDEX.TYPE = 'GoalIndex'
config.TASK_CONFIG.TASK.SUCCESS_DISTANCE = float(np.clip(float(config.TASK_CONFIG.TASK.SUCCESS_DISTANCE) - 0.5, 0.0, 1.0))
config.RL.SUCCESS_DISTANCE = float(np.clip(float(config.RL.SUCCESS_DISTANCE) - 0.5, 0.0, 1.0))
config.TRAINER_NAME = config.RL_TRAINER_NAME
config.features.object_category_num = 80
config.img_node_th = 0.7
config.TASK_CONFIG.img_node_th = 0.7
config.TASK_CONFIG.obj_node_th = 0.8
config.TASK_CONFIG.TRAIN_IL = False
config.TASK_CONFIG.DATASET.DATASET_NAME = args.dataset
config.TASK_CONFIG.PROC_ID = 0
config.IMG_SHAPE = (64, 252) #config.TASK_CONFIG.IMG_SHAPE
config.CHECKPOINT_FOLDER = os.path.join(args.project_dir, config.CHECKPOINT_FOLDER)
habitat_api_path = os.path.join(os.path.dirname(habitat.__file__), '../')
config.ENV_NAME = "MultiImageGoalEnv"
config.TASK_CONFIG.DATASET.SCENES_DIR = os.path.join(habitat_api_path, config.TASK_CONFIG.DATASET.SCENES_DIR)
config.TASK_CONFIG.DATASET.DATA_PATH = os.path.join(habitat_api_path, config.TASK_CONFIG.DATASET.DATA_PATH)
config.TASK_CONFIG.DATASET.SPLIT = split
config.TASK_CONFIG.ENVIRONMENT.ITERATOR_OPTIONS.MAX_SCENE_REPEAT_EPISODES = 2000
config.TASK_CONFIG.ENVIRONMENT.NUM_GOALS = args.num_goals
config.TASK_CONFIG = add_panoramic_camera(config.TASK_CONFIG, normalize_depth=True)
config.DIFFICULTY = 'collect'
config.DATASET_NAME = args.dataset
config.TASK_CONFIG.DATASET.DATASET_NAME = args.dataset
config.record = False
config.render_map = False
config.noisy_actuation = False
config.USE_DETECTOR = config.TASK_CONFIG.USE_DETECTOR = True
if config.USE_DETECTOR:
print('Detector th: ', config.TASK_CONFIG.detector_th)
config.freeze()
if "tiny" in args.dataset:
if args.split == "train":
scenes = GIBSON_TINY_TRAIN_SCENE
elif args.split == "val":
scenes = GIBSON_TINY_TEST_SCENE
else:
dataset = make_dataset(config.TASK_CONFIG.DATASET.TYPE)
scenes = dataset.get_scenes_to_load(config.TASK_CONFIG.DATASET)
print(len(scenes))
ep_per_env = {}
# if "gibson" in args.dataset:
# data_info = json.load(open("./data/scene_info/gibson/gibson_dset_with_qual.json", "r"))
# areas = {}
# for scene in scenes:
# areas[scene] = data_info[scene]['stats']['area']
# sum_areas = np.sum(list(areas.values()))
# for scene in scenes:
# ep_per_env[scene] = int(np.ceil(20000 * areas[scene]/sum_areas))
# else:
for scene in scenes:
ep_per_env[scene] = args.ep_per_env
collected_scenes = list(np.unique([pp.split("_")[0] for pp in os.listdir(DATA_DIR)]))
collected_scenes_orig = collected_scenes.copy()
scene_dict = {}
for cs in collected_scenes_orig:
list_collected = sorted(glob.glob(os.path.join(DATA_DIR, cs) + '*'))
print("collected", cs, len(list_collected))
if len(list_collected) < ep_per_env[cs]:
collected_scenes.remove(cs)
scene_dict[cs] = len(list_collected)
# for lc in list_collected:
# os.remove(lc)
print("collected:", collected_scenes)
scenes = np.sort(scenes)
if args.split_idx == 0:
with open(os.path.join(args.project_dir, args.data_dir, f'{args.split}_config.json'), 'w') as f:
json.dump(config, f)
scenes = np.array_split(scenes, args.num_splits)[args.split_idx]
scenes = list(scenes)
scenes = np.array(scenes)
print(scenes)
scene_dict = {}
for cc in scenes:
list_collected = sorted(glob.glob(os.path.join(DATA_DIR, cc) + '*'))
scene_dict[cc] = len(list_collected)
print(scene_dict)
for space_id, (space, start_idx) in enumerate(scene_dict.items()):
if start_idx < ep_per_env[space]:
print('=' * 50)
print('SPACE[%03d/%03d] STARTED %s' % (space_id + 1, len(scenes), space))
config.defrost()
config.TASK_CONFIG.DATASET.CONTENT_SCENES = [space]
config.freeze()
data_collect(config, DATA_DIR, space_id, len(scenes), start_idx, ep_per_env[space])
if __name__ == "__main__":
main()