Skip to content

Latest commit

 

History

History
197 lines (141 loc) · 9.33 KB

elastirini.md

File metadata and controls

197 lines (141 loc) · 9.33 KB

Elastirini: Anserini Integration with Elasticsearch

Anserini provides code for indexing into an ELK stack, thus providing interoperable support existing test collections.

Deploying Elasticsearch Locally

From the Elasticsearch, download the correct distribution for you platform to the anserini/ directory.

Unpacking:

mkdir elastirini && tar -zxvf elasticsearch*.tar.gz -C elastirini --strip-components=1

Start running:

elastirini/bin/elasticsearch

If you want to install Kibana, it's just another distribution to unpack and a similarly simple command.

Indexing and Retrieval: Robust04

Once we have a local instance of Elasticsearch up and running, we can index using Elasticsearch through Elastirini. In this example, we replicate experiments on Robust04.

First, let's create the index in Elasticsearch. We define the schema and the ranking function (BM25) using this config:

cat src/main/resources/elasticsearch/index-config.robust04.json \
 | curl --user elastic:changeme -XPUT -H 'Content-Type: application/json' 'localhost:9200/robust04' -d @-

The username and password are those defaulted by docker-elk. You can change these if you like.

Now, we can start indexing through Elastirini. Here, instead of passing in -index (to index with Lucene directly), we use -es for Elasticsearch:

sh target/appassembler/bin/IndexCollection -collection TrecCollection -generator DefaultLuceneDocumentGenerator \
 -es -es.index robust04 -threads 16 -input /path/to/disk45 -storePositions -storeDocvectors -storeRaw

We can then run the following command to replicate Anserini BM25 retrieval:

sh target/appassembler/bin/SearchElastic -topicreader Trec -es.index robust04 \
  -topics src/main/resources/topics-and-qrels/topics.robust04.txt \
  -output runs/run.es.robust04.bm25.topics.robust04.txt

To evaluate effectiveness:

$ eval/trec_eval.9.0.4/trec_eval -m map -m P.30 src/main/resources/topics-and-qrels/qrels.robust04.txt runs/run.es.robust04.bm25.topics.robust04.txt
map                   	all	0.2531
P_30                  	all	0.3102

Indexing and Retrieval: MS MARCO Passage

We can replicate the BM25 Baselines on MS MARCO (Passage) results in a similar way. First, set up the proper schema using this config:

cat src/main/resources/elasticsearch/index-config.msmarco-passage.json \
 | curl --user elastic:changeme -XPUT -H 'Content-Type: application/json' 'localhost:9200/msmarco-passage' -d @-

Indexing:

sh target/appassembler/bin/IndexCollection -collection JsonCollection -generator DefaultLuceneDocumentGenerator \
 -es -es.index msmarco-passage -threads 9 -input /path/to/msmarco-passage -storePositions -storeDocvectors -storeRaw

We may need to wait a few minutes after indexing for the index to catch up before performing retrieval, otherwise wrong evaluation metrics are returned.

Retrieval:

sh target/appassembler/bin/SearchElastic -topicreader TsvString -es.index msmarco-passage \
 -topics src/main/resources/topics-and-qrels/topics.msmarco-passage.dev-subset.txt -output runs/run.es.msmacro-passage.txt

Evaluation:

$ ./eval/trec_eval.9.0.4/trec_eval -c -m recall.1000 -m map src/main/resources/topics-and-qrels/qrels.msmarco-passage.dev-subset.txt runs/run.es.msmacro-passage.txt
map                   	all	0.1956
recall_1000           	all	0.8573

Indexing and Retrieval: Core18

We can replicate the TREC Washington Post Corpus results in a similar way. First, set up the proper schema using this config:

cat src/main/resources/elasticsearch/index-config.core18.json \
 | curl --user elastic:changeme -XPUT -H 'Content-Type: application/json' 'localhost:9200/core18' -d @-

Indexing:

sh target/appassembler/bin/IndexCollection -collection WashingtonPostCollection -generator WashingtonPostGenerator \
 -es -es.index core18 -threads 8 -input /path/to/WashingtonPost -storePositions -storeDocvectors -storeContents

We may need to wait a few minutes after indexing for the index to catch up before performing retrieval, otherwise wrong evaluation metrics are returned.

Retrieval:

sh target/appassembler/bin/SearchElastic -topicreader Trec -es.index core18 \
  -topics src/main/resources/topics-and-qrels/topics.core18.txt \
  -output runs/run.es.core18.bm25.topics.core18.txt

Evaluation:

$ eval/trec_eval.9.0.4/trec_eval -m map -m P.30 src/main/resources/topics-and-qrels/qrels.core18.txt runs/run.es.core18.bm25.topics.core18.txt
map                   	all	0.2495
P_30                  	all	0.3567

Indexing and Retrieval: MS MARCO Document

We can replicate the BM25 Baselines on MS MARCO (Doc) results in a similar way. First, set up the proper schema using this config:

cat src/main/resources/elasticsearch/index-config.msmarco-doc.json \
 | curl --user elastic:changeme -XPUT -H 'Content-Type: application/json' 'localhost:9200/msmarco-doc' -d @-

Indexing:

sh target/appassembler/bin/IndexCollection -collection CleanTrecCollection -generator DefaultLuceneDocumentGenerator \
 -es -es.index msmarco-doc -threads 1 -input /path/to/msmarco-doc -storePositions -storeDocvectors -storeRaw

We may need to wait a few minutes after indexing for the index to catch up before performing retrieval, otherwise wrong evaluation metrics are returned.

Retrieval:

sh target/appassembler/bin/SearchElastic -topicreader TsvInt -es.index msmarco-doc \
 -topics src/main/resources/topics-and-qrels/topics.msmarco-doc.dev.txt -output runs/run.es.msmacro-doc.txt

This can take potentially longer than SearchCollection with Lucene indexes.

Evaluation:

$ ./eval/trec_eval.9.0.4/trec_eval -c -m recall.1000 -m map src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.es.msmacro-doc.txt
map                   	all	0.2308
recall_1000           	all	0.8856

Elasticsearch Integration Test

We have an end-to-end integration testing script run_es_regression.py for Core18, Robust04, MS MARCO passage and MS MARCO document. Its functionalities are described below.

# Check if Elasticsearch server is on
python src/main/python/run_es_regression.py --ping
# Check if collection exists
python src/main/python/run_es_regression.py --check-index-exists [collection]
# Create collection if it does not exist
python src/main/python/run_es_regression.py --create-index [collection]
# Delete collection if it exists
python src/main/python/run_es_regression.py --delete-index [collection]
# Insert documents from input directory into collection
python src/main/python/run_es_regression.py --insert-docs [collection] --input [directory]
# Search and evaluate on collection
python src/main/python/run_es_regression.py --evaluate [collection]

# Run end to end
python src/main/python/run_es_regression.py --regression [collection] --input [directory]

Replication Log