-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_gnn.py
238 lines (231 loc) · 10.1 KB
/
train_gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import torch
from module.ViT import FViT
from module.S3ENet import S3ENet_GNN, S3ENet_Embed_MLP
import torch.optim as optim
import torch.nn as nn
import argparse
import itertools
import yaml
import dgl
from time import time
import glob
import os
from tqdm import tqdm
from torch.utils.data import DataLoader
from dataset.gnn_dataset import GNNDataset
from tensorboardX import SummaryWriter
from losses.loss_functions import Shrinkage_loss
def main(configs):
_debug = False
# log writer
writer = SummaryWriter()
# model and data configuration
m_configs = yaml.safe_load(open(configs.model_cfg, 'r'))
model_cfg = m_configs['model']
data_cfg = m_configs['data']
# hyper parameters
learning_rate = float(model_cfg['learning_rate'])
weight_decay = float(model_cfg['weight_decay'])
intermediate_channels = list(model_cfg['intermediate_channels'])
num_patches = int(model_cfg['num_patches'])
patch_size = int(model_cfg['patch_size'])
pos_dim = int(model_cfg['pos_dim'])
emb_dim = int(model_cfg['emb_dim'])
code_dim = int(model_cfg['code_dim'])
h_dim = int(model_cfg['h_dim'])
depth = int(model_cfg['depth'])
heads = int(model_cfg['heads'])
mlp_dim = int(model_cfg['mlp_dim'])
pool = model_cfg['pool']
channels = int(model_cfg['channels'])
dim_head = int(model_cfg['dim_head'])
dropout = float(model_cfg['dropout'])
emb_dropout = float(model_cfg['emb_dropout'])
batch_size = int(model_cfg['batch_size'])
max_epochs = int(model_cfg['max_epochs'])
epsilon_w = float(model_cfg['epsilon_w'])
momentum = float(model_cfg['momentum'])
scheduler_gamma = float(model_cfg['scheduler_gamma'])
shrinkage_a = float(model_cfg['shrinkage_a'])
shrinkage_c = float(model_cfg['shrinkage_c'])
# device of model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# initialize model
s3e_model = S3ENet_GNN(in_feats=code_dim, h_feats=h_dim)
s3e_pred = S3ENet_Embed_MLP(in_feats=code_dim, h_feats=h_dim)
# loss function define
criterion = torch.nn.MSELoss().to(device)
# criterion = Shrinkage_loss(shrinkage_a, shrinkage_c).to(device)
# optimizer define
optimizer = optim.SGD(itertools.chain(s3e_model.parameters(), s3e_pred.parameters()), lr=learning_rate,
momentum=momentum, weight_decay=weight_decay)
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, scheduler_gamma)
s3e_model.to(device)
s3e_pred.to(device)
criterion.to(device)
# prepare the data
""" dummy test data
img = torch.randn(1, 128, 16, 16, 4).to(device)
pos = torch.randn(1, 128, 3).to(device)
img2 = torch.randn(1, 128, 16, 16, 4).to(device)
pos2 = torch.randn(1, 128, 3).to(device)
preds = model(img, pos, img2, pos2).to(device) # (1, 1000)
gt_score = torch.tensor([[0.01]]).to(device)
print(preds.shape)
"""
# training dataset and validation dataset
train_data_root = data_cfg['train_dataset']
val_data_root = data_cfg['val_dataset']
ckpt_out_path = os.path.join(data_cfg['ckpt_output'], "gnn")
if not os.path.exists(ckpt_out_path):
os.mkdir(ckpt_out_path)
summary_out_path = data_cfg['summary_output']
train_dataset = GNNDataset(train_data_root, m_configs, patch_size)
val_dataset = GNNDataset(val_data_root, m_configs, patch_size)
# masked_edge, self.emb_data_buffer_graph, edge_features
train_graph_edges, train_graph_embed, train_edge_feats = train_dataset.get_graph()
train_graph_edges = train_graph_edges.to(device)
train_graph_embed = train_graph_embed.float().to(device)
train_edge_feats = train_edge_feats.float().to(device)
val_graph_edges, val_graph_embed, val_edge_feats = val_dataset.get_graph()
val_graph_edges = val_graph_edges.to(device)
val_graph_embed = val_graph_embed.float().to(device)
val_edge_feats = val_edge_feats.float().to(device)
train_graph = dgl.graph((train_graph_edges[:, 0], train_graph_edges[:, 1]), num_nodes=train_graph_embed.shape[0])
val_graph = dgl.graph((val_graph_edges[:, 0], val_graph_edges[:, 1]), num_nodes=val_graph_embed.shape[0])
train_dataloader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0)
val_dataloader = DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0
)
best_model_loss = 1e5
for epoch in range(max_epochs):
train_iter = iter(train_dataloader)
val_iter = iter(val_dataloader)
# Training
if config.continue_training:
model_checkpoint_fnames = sorted(list(glob.glob(os.path.join(ckpt_out_path, "*_model.pth"))))
pred_checkpoint_fnames = sorted(list(glob.glob(os.path.join(ckpt_out_path, "*_pred.pth"))))
if len(model_checkpoint_fnames) > 0:
# s3e_model load
latest_ckpt_path = model_checkpoint_fnames[-1]
model_dict = torch.load(latest_ckpt_path)
s3e_model.load_state_dict(model_dict["state_dict"])
optimizer.load_state_dict(model_dict['optimizer'])
scheduler.load_state_dict(model_dict['scheduler'])
elif len(pred_checkpoint_fnames) > 0:
# s3e_pred load
latest_ckpt_path = pred_checkpoint_fnames[-1]
model_dict = torch.load(latest_ckpt_path)
s3e_pred.load_state_dict(model_dict["state_dict"])
optimizer.load_state_dict(model_dict['optimizer'])
scheduler.load_state_dict(model_dict['scheduler'])
else:
print("path: {} has no checkpoint file".format(ckpt_out_path))
s3e_model.train()
s3e_pred.train()
bar = tqdm(desc="Training Epoch:{}/{}".format(epoch, max_epochs - 1), initial=0,
total=len(train_dataloader), unit='batches', dynamic_ncols=True, bar_format="{l_bar}{bar:12}{r_bar}")
for i, data in enumerate(train_iter):
if _debug and i > 5:
print('------debug mode on---------')
break
tstart = time()
optimizer.zero_grad()
node_emb = data['emb_vec'].float().to(device)
gt_score = data['iou_label'].float().to(device)
h = s3e_model(train_graph, train_graph_embed)
phi = s3e_pred(node_emb)
preds = torch.matmul(phi, h.T)
loss = criterion(preds, gt_score)
loss.backward()
optimizer.step()
scheduler.step()
time_spend = time() - tstart
with torch.no_grad():
bar.update(1)
bar_dict = {}
bar_dict['loss'] = loss.cpu().numpy()
for ll, vv in bar_dict.items():
if isinstance(vv, str):
continue
bar_dict[ll] = round(float(vv), 3)
bar.set_postfix(bar_dict)
writer.add_scalar('train/loss', loss.cpu().numpy(), i)
writer.flush()
# Evaluation
bar.close()
s3e_model.eval()
s3e_pred.eval()
batches = len(val_dataloader)
with torch.no_grad():
valid_bar = tqdm(desc="Validating", initial=0, total=batches, unit='batches', dynamic_ncols=True,
bar_format="{l_bar}{bar:12}{r_bar}")
val_acc_loss = 0
for i, data in enumerate(val_iter):
tstart = time()
node_emb = data['emb_vec'].float().to(device)
gt_score = data['iou_label'].float().to(device)
h = s3e_model(train_graph, train_graph_embed)
phi = s3e_pred(node_emb)
preds = torch.matmul(phi, h.T)
loss = criterion(preds, gt_score)
writer.add_scalar('val/loss', loss.cpu().numpy(), i)
val_acc_loss += loss.cpu().numpy()
val_bar_dict = {}
val_bar_dict['loss'] = loss.cpu().numpy()
for ll, vv in val_bar_dict.items():
if isinstance(vv, str):
continue
val_bar_dict[ll] = round(float(vv), 3)
valid_bar.set_postfix(val_bar_dict)
valid_bar.update(i)
val_acc_loss = val_acc_loss / len(val_dataset)
if val_acc_loss < best_model_loss:
torch.save(
{
'state_dict': s3e_model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'curr_epoch': epoch,
}, os.path.join(ckpt_out_path, "gnn_weights_epoch_best_model.pth"))
torch.save(
{
'state_dict': s3e_pred.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'curr_epoch': epoch,
}, os.path.join(ckpt_out_path, "gnn_weights_epoch_best_pred.pth"))
torch.save(
{
'state_dict': s3e_model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'curr_epoch': epoch,
}, os.path.join(ckpt_out_path, "gnn_weights_epoch_{}_model.pth".format(epoch)))
torch.save(
{
'state_dict': s3e_pred.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'curr_epoch': epoch,
}, os.path.join(ckpt_out_path, "gnn_weights_epoch_{}_pred.pth".format(epoch)))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--weight_name', type=str, default="weights_epoch_3.pth")
parser.add_argument('--continue_training', type=bool, default=False)
parser.add_argument(
'--model_cfg', '-dc',
type=str,
required=False,
default='config/vit_config.yaml',
help='Classification yaml cfg file. See /config/labels for sample. No default!',
)
config = parser.parse_args()
main(config)