-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcoin_change.rs
173 lines (162 loc) · 5.63 KB
/
coin_change.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*!
完全背包问题: 一个物品可以选一次或多次
零钱兑换(coin-change)也属于完全背包问题,类似题型:
- perfect_squares: 硬币可重复,求凑出target_value的「最少」硬币数
- 零钱兑换-i : 硬币可重复,求凑出target_value的「最少」硬币数
- 零钱兑换-ii : 硬币可重复,求凑出target_value的硬币「方案数」
方案数是number of combinations, (1,2)和(2,1)被认为是同一个方案
所以要「先遍历coin」再遍历value
- combination-sum-iv : 硬币可重复,求凑出target_value的硬币「方案数」
方案数是number of combinations, (1,2)和(2,1)被认为是「不同」方案
所以要「先遍历value」再遍历coin
*/
/// https://leetcode.com/problems/coin-change/
/// 外层是`for value`,内层是`for coin`
#[allow(clippy::option_if_let_else)]
fn coin_change_i_dp_1(coins: Vec<i32>, amount: i32) -> i32 {
let coins = coins
.into_iter()
.map(|coin| coin as usize)
.collect::<Vec<_>>();
let target_value = amount as usize;
let mut dp = vec![None; target_value + 1];
dp[0] = Some(0);
for value in 1..=target_value {
for &coin in &coins {
if coin <= value {
if let Some(dp_value_minus_coin) = dp[value - coin] {
if let Some(ref mut dp_value) = dp[value] {
*dp_value = (*dp_value).min(dp_value_minus_coin + 1);
} else {
dp[value] = Some(dp_value_minus_coin + 1);
}
}
}
}
}
dp[target_value].unwrap_or(-1)
}
/// BestSolution: 外层是`for coin`,内层是`for value`
fn coin_change_i_dp_2(coins: Vec<i32>, amount: i32) -> i32 {
let target_value = amount as usize;
let mut dp = vec![i32::from(i16::MAX); target_value + 1];
dp[0] = 0;
for coin in coins {
let coin = coin as usize;
for value in coin..=target_value {
dp[value] = dp[value].min(dp[value - coin] + 1);
}
}
if dp[target_value] == i32::from(i16::MAX) {
return -1;
}
dp[target_value]
}
/// coin can repreat, return min coins total value equal amount
fn coin_change_i_dfs_tle(coins: Vec<i32>, amount: i32) -> i32 {
let mut dp = CoinChangeDfsState { min_coins: None };
dp.dfs(0, amount, &coins);
dp.min_coins.unwrap_or(-1)
}
/// Time Limit Exceeded
struct CoinChangeDfsState {
min_coins: Option<i32>,
}
impl CoinChangeDfsState {
fn dfs(&mut self, used_coins: i32, target_value: i32, coins: &[i32]) {
if target_value < 0 {
return;
}
if target_value == 0 {
if let Some(min_coins) = self.min_coins {
self.min_coins = Some(min_coins.min(used_coins));
} else {
self.min_coins = Some(used_coins);
}
return;
}
for &coin in coins {
self.dfs(used_coins + 1, target_value - coin, coins);
}
}
}
#[test]
fn test_coin_change_i() {
const TEST_CASES: [(&[i32], i32, i32); 4] = [
(&[1, 2, 5], 11, 3),
(&[1, 0x7FFF_FFFF], 2, 2),
(&[1, 2, 5], 100, 20),
(&[2], 3, -1),
];
for (coins, amount, min_coins) in TEST_CASES {
//assert_eq!(coin_change_dfs_tle(coins.to_owned(), amount), min_coins);
assert_eq!(coin_change_i_dp_1(coins.to_owned(), amount), min_coins);
assert_eq!(coin_change_i_dp_2(coins.to_owned(), amount), min_coins);
}
}
/// https://leetcode.com/problems/coin-change-2/
/// (1,2)和(2,1)被认为是同一种方案,所以只能外层遍历coins能让方案总数较少
fn coin_change_ii(amount: i32, coins: Vec<i32>) -> i32 {
let target_value = amount as usize;
let mut dp = vec![0; target_value + 1];
dp[0] = 1;
for coin in coins {
let coin = coin as usize;
for value in coin..=target_value {
dp[value] += dp[value - coin];
}
}
dp[target_value]
}
/// https://leetcode.com/problems/perfect-squares/
/// least number of square numbers that sum to n
fn perfect_squares(n: i32) -> i32 {
let target_value = n as usize;
let mut dp = vec![i32::from(i16::MAX); target_value + 1];
dp[0] = 0;
let max_coin = f64::from(n).sqrt() as usize;
for coin in 1..=max_coin {
let coin = coin * coin;
for value in coin..=target_value {
dp[value] = dp[value].min(dp[value - coin] + 1);
}
}
if dp[target_value] == i32::from(i16::MAX) {
return 0;
}
dp[target_value]
}
#[test]
fn test_perfect_squares() {
const TEST_CASES: [(i32, i32); 2] = [
(12, 3), // 4+4+4
(13, 2), // 4+9
];
for (input, output) in TEST_CASES {
assert_eq!(perfect_squares(input), output);
}
}
/// https://leetcode.com/problems/combination-sum-iv/
/// (1,2)和(2,1)被认为是同一种方案,所以只能外层遍历value能让方案总数尽可能多
/// 不能解决nums中有负数的情况(硬币面值为负数)
fn combination_sum_iv(nums: Vec<i32>, target: i32) -> i32 {
let coins = nums.into_iter().map(|num| num as usize).collect::<Vec<_>>();
let target_value = target as usize;
let mut dp = vec![0; target_value + 1];
dp[0] = 1;
for value in 1..=target_value {
for &coin in &coins {
if coin <= value {
dp[value] += dp[value - coin];
}
}
}
dp[target_value]
}
#[test]
fn test_combination_sum_iv() {
const TEST_CASES: [(&[i32], i32, i32); 2] = [(&[1, 2, 3], 4, 7), (&[9], 3, 0)];
for (nums, target, min_coins) in TEST_CASES {
assert_eq!(combination_sum_iv(nums.to_owned(), target), min_coins);
}
}