-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfit_modified_newton_large.m
executable file
·76 lines (56 loc) · 1.85 KB
/
fit_modified_newton_large.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
function output = fit_modified_newton_large(D_sq,U,sigma_sq,Y,tau,TOL)
% Solves argmin_b ||Y-Xb||^2 subject to ||b|| <= tau
%R = U*D_sq*U' is the eigendecomposition of the connectivity matrix
%sigma_sq is nonzero for the large groups
%Y is the target, tau is constraint parameter
if sigma_sq <= 0
fprintf('%s\n','error');
hey
end
%compute relevant quantities
normZ = norm(Y,2)^2 - norm(U'*Y,2)^2;
Y_comp = sqrt(D_sq).*(U'*Y);
if f(Y_comp,D_sq,tau,0,sigma_sq,normZ) <= 0
output = Y;
else
%{
if f(Y_comp,D_sq,tau,1,sigma_sq,normZ) <= 0
output = U'*(Y_comp./D_sq);
%}
lambda=10;
%newton phase
tol = 1;
iter=0;Max_newton=30; back_track=0.8;
obj = zeros(1,Max_newton);
while ((tol > TOL)&&(iter<Max_newton))
iter=iter+1;
while lambda-f(Y_comp,D_sq,tau,lambda,sigma_sq,normZ)/f_prime(Y_comp,D_sq,lambda,sigma_sq,normZ)<0
lambda = lambda/2;
end
change=f(Y_comp,D_sq,tau,lambda,sigma_sq,normZ)/f_prime(Y_comp,D_sq,lambda,sigma_sq,normZ);
lambdaN = lambda - change;
% while (abs(f(Y_comp,D_sq,tau,lambdaN,sigma_sq,normZ)) > abs(f(Y_comp,D_sq,tau,lambda,sigma_sq,normZ))) || (lambdaN<0)
% change=change*back_track;
% lambdaN = lambda - change;
% end
obj(iter)=f(Y_comp,D_sq,tau,lambdaN,sigma_sq,normZ)/tau^2;
%%obj(iter)
tol = obj(iter);
lambda = lambdaN;
end
output = U*((U'*Y)./(1+lambda*D_sq));
if sigma_sq > 0
output = output + 1/(1+lambda*sigma_sq)*(Y-U*(U'*Y));
end
end
%required functions------------------------------------
function value = f(Y,D_sq,tau,lambda,sigma_sq,normZ)
value = Y'*(Y./(1+lambda*D_sq).^2) - tau^2;
if sigma_sq > 0
value = value + sigma_sq/(1+lambda*sigma_sq)^2*normZ;
end
function value = f_prime(Y,D_sq,lambda,sigma_sq,normZ)
value = -2 * Y'*(D_sq.*Y./(1+lambda*D_sq).^3);
if sigma_sq > 0
value = value - 2*normZ*sigma_sq^2/(1+lambda*sigma_sq)^3;
end