-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathanalyze_gene_frequencies.py
283 lines (212 loc) · 9.8 KB
/
analyze_gene_frequencies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
## look at frequencies and enrichments of genes
##
## what makes this a little tricky is that gene assignments can be ambiguous: sequence reads
## are often too short to uniquely define the gene, especially in mouse V-alpha where there are
## highly sequence-similar genes.
from basic import *
#from util import get_rep, get_mm1_rep, get_mm1_rep_gene_for_counting
import util
from tcr_rearrangement_new import all_countrep_pseudoprobs
from all_genes import all_genes
with Parser(locals()) as p:
#p.str('args').unspecified_default().multiple().required()
p.str('clones_file').required()
p.str('organism').required()
p.str('fake_tuple_counts_file')
summary_tsvfile = clones_file[:-4] + '_JS_divergence.tsv'
summary_fields = ['epitope']+[x+'_jsd_normed' for x in segtypes_lowercase ]
probs_tsvfile = clones_file[:-4] + '_gene_probs.tsv'
probs_fields = ['epitope','gene','label_prob','jsd_prob','jsd_prob_enrich','pseudoprob','pseudoprob_enrich']
def get_freq_from_tuple_counts_and_bias( counts, bias ):
reps = set()
total = sum( counts.values() )
for t in counts:
for rep in t:
reps.add(rep)
nreps = len(reps)
single_counts = dict( zip(reps, [0.]*nreps ) )
for t,count in counts.iteritems():
tfreqs = [ bias.get(x,0.) for x in t ]
tfreqs_total = sum(tfreqs)
if tfreqs_total==0:
tfreqs = [ 1.0 ]*len(t)
tfreqs_total = float(len(t))
for rep,freq in zip(t,tfreqs):
single_counts[ rep ] += count * freq / tfreqs_total
rep_freq = {}
for rep in reps:
rep_freq[rep] = float( single_counts[rep] ) / total
return rep_freq
def get_baseline_tuple_count_frequencies( counts ):
reps = set()
for t in counts:
for rep in t:
reps.add(rep)
nreps = len(reps)
bias = dict( zip( reps, [1.0/nreps]*nreps ) )
return get_freq_from_tuple_counts_and_bias( counts, bias )
def js_divergence( P, Q ):
total=0.
for rep in frozenset( P.keys() + Q.keys() ):
p = P.get(rep,0.0)
q = Q.get(rep,0.0)
m = 0.5*(p+q)
if p: total += 0.5 * p * math.log( p / m, 2. )
if q: total += 0.5 * q * math.log( q / m, 2. )
return total
def shannon_entropy( P ):
total=0.
for rep,p in P.iteritems():
if p:
total -= p * math.log( p, 2.0 )
return total
def get_jsd_normed( P, Q ):
return 2.0 * js_divergence(P,Q) / ( shannon_entropy(P) + shannon_entropy(Q) )
# def get_relent_traditional( freq, base_freq ):
# relent=0
# for rep,prob in freq.iteritems():
# if prob==0: continue
# naive_prob = base_freq.get(rep,0)
# if naive_prob==0:
# print 'whoah:: rep={} prob={} naive_prob={}'.format(rep,prob,naive_prob)
# continue
# assert naive_prob>0
# relent += prob * math.log(prob/naive_prob,2)
# return relent
# def get_relent( freq, base_freq ):
# return get_jsd_normed( freq, base_freq ) ## hacking!
# since the files don't have info on chain/region, set up a mapping (note that the tuples are of genes not alleles)
gene2segtype = {}
for id,g in all_genes[organism].iteritems():
gene = id[:id.index('*')]
segtype = g.region + g.chain
if gene in gene2segtype:
assert gene2segtype[gene] == segtype
else:
gene2segtype[gene] = segtype
## read the background gene-tuple counts
all_background_tuple_counts = {}
if fake_tuple_counts_file:
tuplecountsfile = fake_tuple_counts_file
assert exists(fake_tuple_counts_file)
else:
tuplecountsfile = path_to_current_db_files()+'/nextgen_tuple_counts_v2_{}_max10M.log'.format(organism)
if exists( tuplecountsfile ):
Log('reading {}'.format( tuplecountsfile ))
for line in open( tuplecountsfile,'r'):
if line.startswith('TUPLE_COUNT'):
l = line.split()
count = int(l[1] )
tup = tuple( sorted( l[2].split(',') ) )
segtype = gene2segtype[ tup[0] ]
#segtype = tup[0][3] + tup[0][2] ## go from 'TRAV*' to 'VA'
assert segtype in segtypes_uppercase
if segtype not in all_background_tuple_counts:
all_background_tuple_counts[segtype] = {}
logfile = l[-1]
if logfile not in all_background_tuple_counts[segtype]:
all_background_tuple_counts[segtype][logfile] = {}
assert tup not in all_background_tuple_counts[segtype][logfile] ## should not be any repeats in the output
all_background_tuple_counts[segtype][logfile][ tup ] = count
else:
Log('WARNING: making up fake tuple counts since dbfile ({}) is missing'.format(tuplecountsfile))
logfile = 'fake_logfile'
for id,g in all_genes[organism].iteritems():
segtype = g.region + g.chain
if segtype in segtypes_uppercase:
if segtype not in all_background_tuple_counts:
all_background_tuple_counts[segtype] = {logfile:{}}
tup = tuple( util.get_mm1_rep_gene_for_counting( id, organism ) )
all_background_tuple_counts[segtype][logfile][ tup ] = 1 ## flat counts
## here we compute J-S divergences of the gene distributions to background
## the trick is that both our gene assigments and the bg gene assigments are ambiguous, and the degree of
## ambiguity depends on experiment-specific things like sequence read length. So to be conservative, when
## comparing our epitope-specific counts to the background counts we collapse ambiguity so as to minimize
## the divergence between the two distributions
##
## read the tcrs from the clones file
all_tcrs = parse_tsv_file( clones_file, ['epitope'], [], True )
print 'making:',summary_tsvfile
out_summary = open( summary_tsvfile, 'w')
out_summary.write( '\t'.join( summary_fields )+'\n' )
print 'making:',probs_tsvfile
out_probs = open( probs_tsvfile, 'w')
out_probs.write( '\t'.join( probs_fields )+'\n' )
for epitope,tcrs in all_tcrs.iteritems():
## this collapses the ambiguity of segment assignment by going with the most popular one in the repertoire
## only doing this here for completeness in the tsv output
## not used for JS-DIV calculation
util.assign_label_reps_and_colors_based_on_most_common_genes_in_repertoire( tcrs, organism )
out_summary_l = {'epitope':epitope}
for segtype in segtypes_uppercase:
region = segtype[0]
chain = segtype[1]
assert region in 'VJ' and chain in 'AB'
tcr_counts = {}
num_tcrs = len(tcrs)
label_rep_counts = {}
tcr_pseudoprob_counts = {}
for tcr in tcrs:
countreps = tuple( sorted( tcr['{}_countreps'.format(segtype.lower())].split(';') ) )
tcr_counts[ countreps ] = tcr_counts.get( countreps, 0)+1
for rep in countreps:
tcr_pseudoprob_counts[rep] = tcr_pseudoprob_counts.get(rep,0)+1
label_rep = tcr['{}_label_rep'.format(segtype.lower()) ]
label_rep_counts[label_rep] = label_rep_counts.get(label_rep,0)+1
best_jsd = 100.
best_tcr_freq = {}
best_bg_freq = {}
for logfile in all_background_tuple_counts[ segtype ]:
#print epitope,segtype,logfile
bg_counts = all_background_tuple_counts[ segtype ][ logfile ]
bg_freq = get_baseline_tuple_count_frequencies( bg_counts )
tcr_freq = get_baseline_tuple_count_frequencies( tcr_counts )
jsd = get_jsd_normed( tcr_freq, bg_freq )
#print 'jsd0:',jsd
for niter in range(1,6):
new_bg_freq = get_freq_from_tuple_counts_and_bias( bg_counts, tcr_freq )
new_tcr_freq = get_freq_from_tuple_counts_and_bias( tcr_counts, new_bg_freq )
tcr_freq = new_tcr_freq
bg_freq = new_bg_freq
jsd = get_jsd_normed( tcr_freq, bg_freq )
#print 'jsd{}: {:9.6f}'.format(niter,jsd),
if jsd<best_jsd:
#print '******'
best_logfile = logfile
best_jsd = jsd
best_bg_freq = bg_freq
best_tcr_freq = tcr_freq
else:
pass
#print
out_summary_l[ segtype.lower()+'_jsd_normed' ] = '{:9.3f}'.format( best_jsd )
# print 'best_jsd: {:9.3f} {} {} {}'\
# .format( best_jsd, epitope, segtype, best_logfile )
## let's look at enrichments of the genes
bg_freq, tcr_freq = best_bg_freq, best_tcr_freq
l = [ (y,x) for x,y in tcr_freq.iteritems() ]
l.sort()
l.reverse()
countreps = sorted( set( g.count_rep for g in all_genes[organism].values() \
if g.chain == chain and g.region == region ) )
num_tcrs = len(tcrs)
for rep in countreps:
label_prob = float( label_rep_counts.get(rep,0) )/num_tcrs
jsd_prob = tcr_freq.get(rep,0.)
bg_prob = bg_freq.get(rep,0.)
jsd_prob_enrich = 1.0 if bg_prob==0. else jsd_prob / bg_prob
pseudoprob = float( tcr_pseudoprob_counts.get(rep,0))/num_tcrs
bg_pseudoprob = all_countrep_pseudoprobs[ organism ][ chain ][ region ][ rep ]
pseudoprob_enrich = 1 if bg_pseudoprob==0. else pseudoprob / bg_pseudoprob
outl = { 'epitope':epitope,
'gene':rep,
'label_prob':'{:.6f}'.format(label_prob),
'jsd_prob':'{:.6f}'.format(jsd_prob),
'jsd_prob_enrich':'{:9.3f}'.format(jsd_prob_enrich),
'pseudoprob':'{:.6f}'.format(pseudoprob),
'pseudoprob_enrich':'{:9.3f}'.format(pseudoprob_enrich),
}
out_probs.write( make_tsv_line( outl, probs_fields ) + '\n' )
out_summary.write( make_tsv_line( out_summary_l, summary_fields ) + '\n' )
out_probs.close()
out_summary.close()