-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNeural_network.cpp
352 lines (326 loc) · 11.1 KB
/
Neural_network.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#include "Neural_network.hpp"
/**
* @brief Construct a new Neural Network object
*
* @param[in] num_inputs number of input signals (training data)
* @param[in] num_hidden_layers number of hidden layers
* @param[in] num_hidden_nodes number of nodes per hidden layer
* @param[in] num_outputs number of output signals (training data)
* @param[in] ao option to select an activation method
*/
Neural_network::Neural_network(const std::size_t num_inputs,
const std::size_t num_hidden_layers,
const std::size_t num_hidden_nodes,
const std::size_t num_outputs,
const activation_option ao)
{
this->init(num_inputs, num_hidden_layers, num_hidden_nodes, num_outputs, ao);
}
/**
* @brief initiates a neural network with chosen number of nodes for each layer
* and chosen activation function.
*
* @details sets number of inputs, hidden layers, hidden nodes and output nodes,
* if 0 hidden layers are chosen, 1 is created. If 0 nodes are chosen,
* same number as numbers of inputs are created.
* @param[in] num_inputs number of input signals (training data)
* @param[in] num_hidden_layers number of hidden layers
* @param[in] num_hidden_nodes number of nodes per hidden layer
* @param[in] num_outputs number of output signals (training data)
* @param[in] af option to select an activation method
*/
void Neural_network::init(const std::size_t num_inputs,
std::size_t num_hidden_layers,
std::size_t num_hidden_nodes,
const std::size_t num_outputs,
const activation_option ao)
{
if (num_hidden_layers == 0)
{
num_hidden_layers = 1;
}
if (num_hidden_nodes == 0)
{
num_hidden_nodes = num_inputs;
}
this->output_layer_.set_activation(ao);
this->output_layer_.resize(num_outputs, num_hidden_nodes);
this->hidden_layers_.resize(num_hidden_layers);
for (size_t i = 0; i < num_hidden_layers; i++)
{
this->hidden_layers_[i].set_activation(ao);
if (i == 0)
{
this->hidden_layers_[i].resize(num_hidden_nodes, num_inputs);
}
else
{
this->hidden_layers_[i].resize(num_hidden_nodes, num_hidden_nodes);
}
}
}
/**
* @brief function to add additional layers
*
* @param[in] num_hidden_layers number of hidden layers
* @param[in] num_hidden_nodes number of nodes per hidden layer
* @param[in] ao option to select an activation method
*/
void Neural_network::add_hidden_layers(std::size_t num_hidden_layers,
std::size_t num_hidden_nodes,
const activation_option ao)
{
std::size_t old_size = this->hidden_layers_.size();
std::size_t last_layer_nodes = this->hidden_layers_[old_size - 1].num_nodes();
if (num_hidden_layers == 0)
{
num_hidden_layers = 1;
}
if (num_hidden_nodes == 0)
{
num_hidden_nodes = last_layer_nodes;
}
std::size_t new_size = old_size + num_hidden_layers;
this->hidden_layers_.resize(new_size);
for (size_t i = old_size; i < new_size; i++)
{
this->hidden_layers_[i].set_activation(ao);
if (i == old_size)
{
this->hidden_layers_[i].resize(num_hidden_nodes, last_layer_nodes);
}
else
{
this->hidden_layers_[i].resize(num_hidden_nodes, num_hidden_nodes);
}
}
std::size_t output_layer_nodes = this->output_layer_.num_nodes();
this->output_layer_.clear();
this->output_layer_.resize(output_layer_nodes, num_hidden_nodes);
}
/**
* @brief initiates training data
*
* @param[in] train_x_in training input data
* @param[in] train_yref_out traingin output data (target)
*/
void Neural_network::set_training_data(const std::vector<std::vector<double>> &train_x_in,
const std::vector<std::vector<double>> &train_yref_out)
{
this->train_x_in_ = train_x_in;
this->train_yref_out_ = train_yref_out;
this->check_training_data_size();
this->init_training_order();
}
/**
* @brief function that handles the training of the neural network.
*
*
* @param[in] num_epochs number of training epochs
* @param[in] learning_rate amount of error adjustment used for optimisation
*/
void Neural_network::train(const std::size_t num_epochs,
const double learning_rate)
{
for (std::size_t i = 0; i < num_epochs; i++)
{
this->randomize_training_order();
for (std::size_t j = 0; j < this->train_order_.size(); j++)
{
const auto index = this->train_order_[j];
const auto &input = this->train_x_in_[index];
const auto &reference = this->train_yref_out_[index];
this->feedforward(input);
this->backpropagate(reference);
this->optimize(input, learning_rate);
}
}
}
/**
* @brief compairs the size of input and output training data
* and fix variations betwen them
*/
void Neural_network::check_training_data_size(void)
{
if (this->train_x_in_.size() < this->train_yref_out_.size())
{
this->train_yref_out_.resize(this->train_x_in_.size());
}
else if (this->train_x_in_.size() > this->train_yref_out_.size())
{
this->train_x_in_.resize(this->train_yref_out_.size());
}
}
/**
* @brief initiates the training order vector and sets it to the size of train_x_in
*
*/
void Neural_network::init_training_order(void)
{
this->train_order_.resize(this->train_x_in_.size());
for (std::size_t i = 0; i < this->train_order_.size(); i++)
{
this->train_order_[i] = i;
}
}
/**
* @brief calculates output for all nodes in the entire neural network
*
* @param[in] input input signals
*/
void Neural_network::feedforward(const std::vector<double> &input)
{
for (size_t i = 0; i < this->hidden_layers_.size(); i++)
{
if (i == 0)
{
this->hidden_layers_[i].feedforward(input);
}
else
{
this->hidden_layers_[i].feedforward(this->hidden_layers_[i - 1].output);
}
}
this->output_layer_.feedforward(this->hidden_layers_[this->hidden_layers_.size() - 1].output);
}
/**
* @brief calculates the error for all nodes in the entire neural network
* @details running backwards hidden_layer_0 <- hidden_layer_1 <- output_layer
*
* @param[in] reference training data (y_ref, target)
*/
void Neural_network::backpropagate(const std::vector<double> &reference)
{
this->output_layer_.backpropagate(reference);
for (int i = this->hidden_layers_.size() - 1; i >= 0; i--)
{
if (i == (int)this->hidden_layers_.size() - 1)
{
this->hidden_layers_[i].backpropagate(this->output_layer_);
}
else
{
this->hidden_layers_[i].backpropagate(this->hidden_layers_[i + 1]);
}
}
}
/**
* @brief calculates new bias and weights for all nodes in the entire neural network
*
* @param[in] input training input data
* @param[in] learning_rate amount of error adjustment
*/
void Neural_network::optimize(const std::vector<double> &input,
const double learning_rate)
{
for (size_t i = 0; i < this->hidden_layers_.size(); i++)
{
if (i == 0)
{
this->hidden_layers_[i].optimize(input, learning_rate);
}
else
{
this->hidden_layers_[i].optimize(this->hidden_layers_[i - 1].output, learning_rate);
}
}
this->output_layer_.optimize(this->hidden_layers_[this->hidden_layers_.size() - 1].output, learning_rate);
}
/**
* @brief randomizes the training order to prevent overfitting.
*
*/
void Neural_network::randomize_training_order(void)
{
for (std::size_t i = 0; i < this->train_order_.size(); ++i)
{
const auto r = std::rand() % this->train_order_.size();
const auto temp = this->train_order_[i];
this->train_order_[i] = this->train_order_[r];
this->train_order_[r] = temp;
}
}
/**
* @brief function to reset all the values in the neural network
*
*/
void Neural_network::clear(void)
{
for (size_t i = 0; i < this->hidden_layers_.size(); i++)
{
this->hidden_layers_[i].clear();
}
this->hidden_layers_.clear();
this->output_layer_.clear();
this->train_x_in_.clear();
this->train_yref_out_.clear();
this->train_order_.clear();
}
/**
* @brief runs inputs signals through the trained neural network and returns the answer
*
* @param[in] input input signals
* @return const std::vector<double>&
*/
const std::vector<double> &Neural_network::predict(const std::vector<double> &input)
{
this->feedforward(input);
return this->output_layer_.output;
}
/**
* @brief function to print the results after succesfully training and running the
* neural network
*
* @param[in] num_decimals sets the number of decimals for the result print.
* @param[in] ostream chosen output stream
*/
void Neural_network::print_result(const std::size_t num_decimals,
std::ostream &ostream)
{
if (this->train_x_in_.size() == 0)
return;
ostream << "-=( training result )=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\n";
for (size_t i = 0; i < this->train_x_in_.size(); i++)
{
ostream << "Input: ";
for (size_t j = 0; j < this->train_x_in_[i].size(); j++)
{
ostream << std::setprecision(num_decimals) << this->train_x_in_[i][j] << " ";
}
ostream << "Target: ";
ostream << std::setprecision(num_decimals) << this->train_yref_out_[i][0];
ostream << " Pred: ";
double print;
for (auto &j : this->predict(this->train_x_in_[i]))
{
print = j < 0.1 ? 0 : j;
ostream << print << std::setprecision(5) << "\t Real_value: " << j;
}
ostream << "\n";
}
ostream << "-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\n\n";
}
/**
* @brief prints information about the enitre neural net
* @details
* LITE FULL
* no of weights per node x x
* no of nodes x x
* activation mode x x
* weight and bias data x
*
* @param[in] po chose print option FULL or LITE
* @param[in] ostream chosen output stream
*/
void Neural_network::print_network(print_option po, std::ostream &ostream)
{
for (size_t i = 0; i < this->hidden_layers_.size(); i++)
{
ostream << "-=( hidden layer " << i + 1 << " )=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\n";
this->hidden_layers_[i].print(po);
ostream << "-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\n\n";
}
ostream << "-=( output layer )=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\n";
this->output_layer_.print(po);
ostream << "-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\n\n";
}