-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathexample_eval.py
48 lines (37 loc) · 1.55 KB
/
example_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from __future__ import print_function
import sys
import os
from pyimpute import load_training_vector, evaluate_clf
from sklearn.ensemble import ExtraTreesClassifier
import json
import numpy as np
import logging
logger = logging.getLogger('pyimpute')
logger.setLevel(logging.DEBUG)
sh = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(sh)
TRAINING_DIR = "./_usfs_data"
def main():
# Define the known data points or "training" data
explanatory_fields = "d100 dd0 dd5 fday ffp gsdd5 gsp map mat_tenths mmax_tenths mmindd0 mmin_tenths mtcm_tenths mtwm_tenths sday".split()
explanatory_rasters = [os.path.join(TRAINING_DIR, "current_" + r + ".img") for r in explanatory_fields]
response_shapes = os.path.join(TRAINING_DIR, "DF.shp")
# Load the training rasters using the sampled subset
try:
cached = json.load(open("_cached_training.json"))
train_xs = np.array(cached['train_xs'])
train_y = np.array(cached['train_y'])
except IOError:
train_xs, train_y = load_training_vector(response_shapes,
explanatory_rasters, response_field='GRIDCODE')
cache = {'train_xs': train_xs.tolist(), 'train_y': train_y.tolist()}
with open("_cached_training.json", 'w') as fh:
fh.write(json.dumps(cache))
print(train_xs.shape, train_y.shape)
# Train the classifier
clf = ExtraTreesClassifier(n_estimators=120, n_jobs=3)
clf.fit(train_xs, train_y)
print(clf)
evaluate_clf(clf, train_xs, train_y, feature_names=explanatory_fields)
if __name__ == '__main__':
main()