-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAStar.pde
245 lines (229 loc) · 7.23 KB
/
AStar.pde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
//Declaring variables
//unvisited nodesvariable
ArrayList<Node> nodes = new ArrayList<Node>();
//visited nodes variable
ArrayList<Node> visitedNodes = new ArrayList<Node>();
//the initial state of the game
State initalState = new State(3, 3, "L");
//the initial state of the game
State goalState = new State(0, 0, "R");
ArrayList<Integer> status = new ArrayList<Integer>();
void setup() {
size(350, 700); //size of the window
background(255);//setting white background
//A* Algorith:
//add root
nodes.add(new Node(initalState, 0, -1, false, 0));
/*Add status of root.
0 is nodes with children,
1 is goal node,
-1 is not valid nodes,
2 is already visited nodes
*/
status.add(0);
//counter
int size = 0;
//loop until the algorithm finds the answer
while (true) {
//to check if node is already visited
//if flag is true node has been visited before
boolean flag = false;
Node cur = nodes.get(0);
for (int j = 0; j < visitedNodes.size(); j++) {
if (cur.getState().isEqual(visitedNodes.get(j).getState())) {
flag = true;
break;
}
}
//printing current node
println("--------");
print("Current state: ");
nodes.get(0).getState().printState();
//if current node is goal
if (nodes.get(0).getState().isEqual(goalState)) {
println("GOAL STATE");
//node is visited
nodes.get(0).setVisited(true);
//add it visited nodes
visitedNodes.add(nodes.get(0));
//remove it from unvisited nodes
nodes.remove(0);
break;
}
//if current node is valid
if (nodes.get(0).getState().isValid()) {
//if current node is not visited
if (!flag) {
State[] nextStates = nodes.get(0).getState().nextStates();
Node parNode = nodes.get(0);
for (int j = 0; j < nextStates.length; j++) {
//visit the node
//add children to unvisited nodes
nodes.add(new Node(nextStates[j], ++size, parNode.getID(), false, parNode.getDepth()+1));
}
} else {
//aready visited node
println("Visited Before");
}
} else {
//not a valid state
println("Not a valid state");
}
//node is visited
nodes.get(0).setVisited(true);
//add it visited nodes
visitedNodes.add(nodes.get(0));
//remove it from unvisited nodes
nodes.remove(0);
//sort the nodes base on f(n)
nodes = sortNode(nodes);
println("--------");
}
//Visualizing the graph on GUI
//Graph Legend:
//LIGHT BLUE: Root node
//RED: Not a valid node
//BLUE: Previously visited node
//BLACK: Node with children
//GREEN: Path node
//sort the visited nodes base on their ID
int n = visitedNodes.size();
for (int i = 0; i < n-1; i++)
for (int j = 0; j < n-i-1; j++)
if (visitedNodes.get(j).getID() > visitedNodes.get(j+1).getID())
{
Node temp = visitedNodes.get(j);
visitedNodes.set(j, visitedNodes.get(j+1));
visitedNodes.set(j+1, temp);
}
//helpers to show the search tree coordinates
int v = 1;
int y = 0;
//an array with id of each nodes parent in the array
int[] parentNodeNumber = new int[visitedNodes.size()];
//root node does not have a parent
parentNodeNumber[0] = -1;
//for every visited node
for (int x = 1; x < visitedNodes.size(); x++) {
boolean flag = false;
State cur = visitedNodes.get(x).getState();
//add state of each node
for (int i = 0; i < x; i++) {
if (cur.isEqual(visitedNodes.get(i).getState())) {
flag = true;
}
}
//go through all the visited nodes and assign the status
if (visitedNodes.get(x).getState().isValid()) {
if (!flag) {
status.add(0);
} else {
status.add(2);
}
} else {
status.add(-1);
}
//to find parent index
for (int k = 0; k < x; k++) {
if (visitedNodes.get(x).getState().getParent().isEqual(visitedNodes.get(k).getState())) {
parentNodeNumber[x] = k;
//break so that it select the first of the same node
break;
}
}
}
//color of forground is black
fill(0);
ArrayList<Integer> rowIndex = new ArrayList<Integer>();
for (int i = 0; i < visitedNodes.size(); i++) {
//if not inital state
if (i!=0) {
//find if depth is different
if (visitedNodes.get(i).getDepth() == visitedNodes.get(i-1).getDepth()) {
//if items are in the same row
//move items in same row to right everytime
y++;
} else {
//if item is in a new row
//go down
v++;
//start from the left
y =0;
rowIndex.add(i);
}
int parentIndex = parentNodeNumber[i];
//find what number parents is in, in the previous row by subtracting its index from last the last item in previous row
int li = 0;
for (int x = 1; x < rowIndex.size(); x++) {
if (parentIndex < rowIndex.get(x)) {
li = parentIndex - rowIndex.get(x -1);
break;
}
}
//find path from inital state to goal state
ArrayList<Integer> path = new ArrayList<Integer>();
path.add(visitedNodes.size()-1);
int parent = parentNodeNumber[visitedNodes.size()-1];
path.add(parent);
while (true) {
if (parent != -1) {
parent = parentNodeNumber[parent];
path.add(parent);
} else {
break;
}
}
stroke(0);
//assign different color to each state
if (i == visitedNodes.size()-1) {
stroke(color(0, 150, 0));
fill(color(0, 150, 0));
} else if (path.contains(i)) {
fill(color(0, 150, 0));
stroke(color(0, 150, 0));
} else if (status.get(i) == 2) {
fill(color(0, 0, 256));
} else if (status.get(i) == -1) {
fill(color(256, 0, 0));
} else {
fill(0);
}
line(30+(li*50)+25, 30+((v-1)*50) + 11, 30+(y*50) + 25, 30+(v*50)-20);
//show f(n)
textSize(9);
text("f(n)="+visitedNodes.get(i).getCost()+"="+visitedNodes.get(i).getDepth()+"+"+visitedNodes.get(i).getState().getH(), 30+(y*50), 18+(v*50));
textSize(14);
text(visitedNodes.get(i).getState().stateString(), 30+(y*50), 30+(v*50));
textSize(9);
int a = visitedNodes.get(i).getState().getH() == -1 ? 0 :visitedNodes.get(i).getState().getH();
text("h(n)="+a, 30+(y*50), 40+(v*50));
} else {
fill(color(0, 150, 200));
textSize(9);
text("f(n)="+visitedNodes.get(i).getCost()+"="+visitedNodes.get(i).getDepth()+"+"+visitedNodes.get(i).getState().getH(), 30, 18+(v*50));
textSize(14);
text(visitedNodes.get(i).getState().stateString(), 30, 30+(v*50));
textSize(9);
int a = visitedNodes.get(i).getState().getH() == -1 ? 0 :visitedNodes.get(i).getState().getH();
text("h(n)="+a, 30, 40+(v*50));
}
}
int total = visitedNodes.size();
fill(0);
textSize(14);
text("Visited Nodes: "+total, width - 120, height - 20);
}
ArrayList<Node> sortNode(ArrayList<Node> arr)
{
int n = arr.size();
for (int i = 0; i < n-1; i++)
for (int j = 0; j < n-i-1; j++)
if (arr.get(j).getCost() > arr.get(j+1).getCost())
{
// swap arr[j+1] and arr[j]
Node temp = arr.get(j);
arr.set(j, arr.get(j+1));
arr.set(j+1, temp);
}
return arr;
}