-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathA_star_pretrain.py
298 lines (237 loc) · 11.8 KB
/
A_star_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 29 09:12:00 2018
@author: Orlando Ciricosta
Pretrain the A3C brain for IPaLot, using an A* search algorithm
to identify the path to the target spot: it generates a target
policy(state) and value(state) that will be used as y_train(x_train)
to train the NN
"""
import pygame
from pretrain_classes.Group_handler import Car_handler
from cfg import WIDTH, HEIGHT, NUM_ACTIONS, BACKGROUND_COLOR
from pretrain_classes.A3C_objects import Brain, get_current_reward, memory_push
from pretrain_classes.A_star_objects import Priority_queue, Vertex
from pygame.locals import QUIT
import numpy as np
import sys
# each car will act several times per each step of the loop
consecutive_actions = 20
def save_path(come_from, current, graph, brain, car, manager, screen):
''' save the s,a,r,s' to the brain memory
and render the path found by A* '''
path = [current]
while current in come_from.keys():
current = come_from[current]
path.append(current)
current = path.pop()
graph[current].update(car)
terminal_flags = [False]
states = manager.get_states(terminal_flags)
memories = [[]]
tot_rewards = [0]
while path:
current = path.pop()
a = graph[current].parent_action
one_hot_action = np.zeros(NUM_ACTIONS)
one_hot_action[a] = 1.0
for i in range(consecutive_actions):
car.act(a)
new_states = manager.get_states(terminal_flags)
rewards = [ get_current_reward(manager) ]
background = pygame.Surface(screen.get_size())
background = background.convert()
background.fill(BACKGROUND_COLOR)
screen.blit(background, (0, 0))
manager.moving_cars_group.draw(screen)
manager.static_cars_group.draw(screen)
pygame.display.flip()
if (not path) and (i == consecutive_actions -1):
terminal_flags = [True]
memory_push(states, [one_hot_action,],
rewards, new_states, terminal_flags,
[False], memories, tot_rewards, brain)
states = new_states
#------------------------------------------------------------------------------
def main():
# Initialize screen
size = WIDTH, HEIGHT
pygame.init()
screen = pygame.display.set_mode(size)
pygame.display.set_caption('Basic parking training')
background = pygame.Surface(screen.get_size())
background = background.convert()
color = (50, 50, 50)
background.fill(color)
screen.blit(background, (0, 0))
pygame.display.flip()
# Initialise brain
brain = Brain()
# Now perform a A* for a path to the parking spot from each of N_START
# positions to each of the possible parking spots, accumulating s,a,r,s'
# in memory at the end of each episode.
# Once all the possible A* searches are done train
# the brain (Note lenght-1 lists/loops in the following are the result
# of reusing code written for the multi-agent A3C case)
if len(sys.argv) > 1:
if sys.argv[1] == '--test':
N_SPOTS = 1 # number of parking spots, max 18
N_STARTS = 1 #5 # number of starting positions
else:
N_SPOTS = 18 # number of parking spots, max 18
N_STARTS = 5 # number of starting positions
else:
N_SPOTS = 18 # number of parking spots, max 18
N_STARTS = 5 # number of starting positions
N_CARS = 1 # do not change this
exit_signal = False
for i_spot in range(N_SPOTS):
for i_start in range(N_STARTS):
# start an episode
manager = Car_handler(N_CARS, i_spot, i_start, N_STARTS)
car = manager.moving_cars[0]
first = True # flag for testing
# do a search for each of the target positions
while manager.target_positions[0]:
# this block is for testing only
if not first:
break
if len(sys.argv) > 1:
if sys.argv[1] == '--test':
first = False
target = manager.target_positions[0].pop()
if manager.current_target:
manager.current_target[0]= target
else:
manager.current_target.append(target)
terminal = [False]*N_CARS
states = manager.get_states(terminal)
stop_training = []
tot_rewards = []
R = []
memories = []
for i in range(N_CARS):
memories.append([])
tot_rewards.append(0)
stop_training.append(False)
R.append(0)
# initialize A* search
open_set = Priority_queue()
closed_set = set()
come_from = {}
gscore = {}
fscore = {}
graph = {} # dict to store vertices -- graph[vertex_id]=vertex
start = Vertex(states[0], car, None, None, None)
graph[start.id] = start
open_set.add_task(start.id)
gscore[start.id] = 0
fscore[start.id] = manager.get_distance(start.fw, target[0]) \
+ manager.get_distance(start.rw, target[1])
done = False
found = False
# here starts the forward search algorithm ------------------------
while open_set.list:
for event in pygame.event.get():
if event.type == QUIT:
done = True
exit_signal = True
current = open_set.pop_task()
current_vertex = graph[ current ]
current_vertex.update(car)
# check if the current vertex is a target position
# and update target if an intermediate position is reached
fwp = car.get_frontwheel(negative_y = False)
rwp = car.get_rearwheel(negative_y = False)
fwt = manager.current_target[0][0]
rwt = manager.current_target[0][1]
dist0= manager.get_distance(fwp,fwt,drawpath=True)
dist1= manager.get_distance(rwp,rwt)
if ( dist1 <= 5 ) and ( dist0 <= 5 ):
found = True
if found:
save_path(come_from, current, graph,
brain, car, manager, screen)
if done or found:
break
closed_set.add(current)
# update last_distances now rather than in in the
# get_current_reward function (as in main), because
# here I will call that function N_ACTIONS times
manager.last_distances[0][0] = dist0
manager.last_distances[0][1] = dist1
# render now before exploring
background = pygame.Surface(screen.get_size())
background = background.convert()
background.fill(BACKGROUND_COLOR)
screen.blit(background, (0, 0))
manager.moving_cars_group.draw(screen)
manager.static_cars_group.draw(screen)
pygame.draw.lines(screen,
(0,0,0),
False,
manager.path_list,
3)
pygame.display.flip()
# now check all children and add them to the
# PQ if they don't collide and have not been explored
for a in range(NUM_ACTIONS):
for _ in range(consecutive_actions):
car.act(a)
collision = False
if car.rect.left < 0 or car.rect.right > WIDTH:
collision = True
elif car.rect.top < 0 or car.rect.bottom > HEIGHT:
collision = True
elif pygame.sprite.spritecollide(car,
manager.static_cars_group,
False,
pygame.sprite.collide_mask):
collision = True
elif pygame.sprite.spritecollide(car,
manager.collide_with[i],
False,
pygame.sprite.collide_mask):
collision = True
if not collision:
reward = get_current_reward(manager)
terminal = [False]*N_CARS
new_states = manager.get_states(terminal)
new_vertex = Vertex(new_states[0],
car,
current_vertex,
a,
reward)
if new_vertex.id not in gscore.keys():
gscore[new_vertex.id] = 1e10
fscore[new_vertex.id] = 1e10
tentative_gscore = gscore[current] + \
new_vertex.parent_distance()
update = False
if tentative_gscore < gscore[new_vertex.id]:
come_from[new_vertex.id] = current
gscore[new_vertex.id] = tentative_gscore
fscore[new_vertex.id] = tentative_gscore + \
manager.get_distance(new_vertex.fw,target[0]) \
+ manager.get_distance(new_vertex.rw,target[1])
update = True
if (new_vertex.id not in graph.keys()) or update:
open_set.add_task(new_vertex.id,
priority = fscore[new_vertex.id])
graph[new_vertex.id] = new_vertex
# reset the car after trying each action
current_vertex.update(car)
# end of A* search---------------------------------------------
if exit_signal:
break
if not found:
print("Warning: A* ended with no success.")
print(" Try and reduce consecutive_actions ")
if exit_signal:
break
if exit_signal:
break
brain.fit()
# Finally save the weights
brain.model.save_weights('weights/pretrain_weights.h5')
if __name__ == '__main__': main()