-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy path__init__.py
170 lines (129 loc) · 8.01 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import random
import json
from utils.system_utils import searchForMaxIteration
from scene.dataset_readers import sceneLoadTypeCallbacks
from scene.oursfull import GaussianModel
from arguments import ModelParams
from PIL import Image
from utils.camera_utils import camera_to_JSON, cameraList_from_camInfosv2, cameraList_from_camInfosv2nogt
from helper_train import recordpointshelper, getfisheyemapper
import torch
class Scene:
# gaussians : GaussianModel
def __init__(self, args : ModelParams, gaussians, load_iteration=None, shuffle=True, resolution_scales=[1.0], multiview=False,duration=50.0, loader="colmap"):
"""b
:param path: Path to colmap scene main folder.
"""
self.model_path = args.model_path
self.loaded_iter = None
self.gaussians = gaussians
self.refmodelpath = None
if load_iteration:
if load_iteration == -1:
self.loaded_iter = searchForMaxIteration(os.path.join(self.model_path, "point_cloud"))
else:
self.loaded_iter = load_iteration
print("Loading trained model at iteration {}".format(self.loaded_iter))
self.train_cameras = {}
self.test_cameras = {}
raydict = {}
if loader == "colmap" or loader == "colmapvalid": # colmapvalid only for testing
scene_info = sceneLoadTypeCallbacks["Colmap"](args.source_path, args.images, args.eval, multiview, duration=duration)
elif loader == "technicolor" or loader == "technicolorvalid" :
scene_info = sceneLoadTypeCallbacks["Technicolor"](args.source_path, args.images, args.eval, multiview, duration=duration)
elif loader == "immersive" or loader == "immersivevalid" or loader == "immersivess" :
scene_info = sceneLoadTypeCallbacks["Immersive"](args.source_path, args.images, args.eval, multiview, duration=duration)
elif loader == "immersivevalidss":
scene_info = sceneLoadTypeCallbacks["Immersive"](args.source_path, args.images, args.eval, multiview, duration=duration, testonly=True)
elif loader == "colmapmv" : # colmapvalid only for testing
scene_info = sceneLoadTypeCallbacks["Colmapmv"](args.source_path, args.images, args.eval, multiview, duration=duration)
else:
assert False, "Could not recognize scene type!"
if not self.loaded_iter:
with open(scene_info.ply_path, 'rb') as src_file, open(os.path.join(self.model_path, "input.ply") , 'wb') as dest_file:
dest_file.write(src_file.read())
json_cams = []
camlist = []
if scene_info.test_cameras:
camlist.extend(scene_info.test_cameras)
if scene_info.train_cameras:
camlist.extend(scene_info.train_cameras)
for id, cam in enumerate(camlist):
json_cams.append(camera_to_JSON(id, cam))
with open(os.path.join(self.model_path, "cameras.json"), 'w') as file:
json.dump(json_cams, file, indent=2)
if shuffle:
random.shuffle(scene_info.train_cameras) # Multi-res consistent random shuffling
random.shuffle(scene_info.test_cameras) # Multi-res consistent random shuffling
self.cameras_extent = scene_info.nerf_normalization["radius"]
for resolution_scale in resolution_scales:
print("Loading Training Cameras")
if loader in ["colmapvalid", "colmapmv", "immersivevalid","technicolorvalid", "immersivevalidss", "imv2valid"]:
self.train_cameras[resolution_scale] = [] # no training data
elif loader in ["immersivess"]:
assert resolution_scale == 1.0, "High frequency data only available at 1.0 scale"
self.train_cameras[resolution_scale] = cameraList_from_camInfosv2(scene_info.train_cameras, resolution_scale, args, ss=True)
else: # immersive and immersivevalid
self.train_cameras[resolution_scale] = cameraList_from_camInfosv2(scene_info.train_cameras, resolution_scale, args)
print("Loading Test Cameras")
if loader in ["colmapvalid", "immersivevalid", "colmap", "technicolorvalid", "technicolor", "imv2","imv2valid"]: # we need gt for metrics
self.test_cameras[resolution_scale] = cameraList_from_camInfosv2(scene_info.test_cameras, resolution_scale, args)
elif loader in ["immersivess", "immersivevalidss"]:
self.test_cameras[resolution_scale] = cameraList_from_camInfosv2(scene_info.test_cameras, resolution_scale, args, ss=True)
elif loader in ["colmapmv"]: # only for multi view
self.test_cameras[resolution_scale] = cameraList_from_camInfosv2nogt(scene_info.test_cameras, resolution_scale, args)
for cam in self.train_cameras[resolution_scale]:
if cam.image_name not in raydict and cam.rayo is not None:
# rays_o, rays_d = 1, cameradirect
raydict[cam.image_name] = torch.cat([cam.rayo, cam.rayd], dim=1).cuda() # 1 x 6 x H x W
for cam in self.test_cameras[resolution_scale]:
if cam.image_name not in raydict and cam.rayo is not None:
raydict[cam.image_name] = torch.cat([cam.rayo, cam.rayd], dim=1).cuda() # 1 x 6 x H x W
for cam in self.train_cameras[resolution_scale]:
cam.rays = raydict[cam.image_name] # should be direct ?
for cam in self.test_cameras[resolution_scale]:
cam.rays = raydict[cam.image_name] # should be direct ?
if loader in ["immersivess", "immersivevalidss"]:# construct shared fisheyd remapping
self.fisheyemapper = {}
for cam in self.train_cameras[resolution_scale]:
if cam.image_name not in self.fisheyemapper:
self.fisheyemapper[cam.image_name] = getfisheyemapper(args.source_path, cam.image_name) #
self.fisheyemapper[cam.image_name].requires_grad = False
for cam in self.test_cameras[resolution_scale]:
if cam.image_name not in self.fisheyemapper:
self.fisheyemapper[cam.image_name] = getfisheyemapper(args.source_path, cam.image_name) #
self.fisheyemapper[cam.image_name].requires_grad = False
for cam in self.train_cameras[resolution_scale]:
cam.fisheyemapper = self.fisheyemapper[cam.image_name]
for cam in self.test_cameras[resolution_scale]:
cam.fisheyemapper = self.fisheyemapper[cam.image_name]
if self.loaded_iter :
self.gaussians.load_ply(os.path.join(self.model_path,
"point_cloud",
"iteration_" + str(self.loaded_iter),
"point_cloud.ply"))
else:
self.gaussians.create_from_pcd(scene_info.point_cloud, self.cameras_extent)
def save(self, iteration):
point_cloud_path = os.path.join(self.model_path, "point_cloud/iteration_{}".format(iteration))
self.gaussians.save_ply(os.path.join(point_cloud_path, "point_cloud.ply"))
# recordpointshelper(model_path, numpoints, iteration, string):
def recordpoints(self, iteration, string):
txtpath = os.path.join(self.model_path, "exp_log.txt")
numpoints = self.gaussians._xyz.shape[0]
recordpointshelper(self.model_path, numpoints, iteration, string)
def getTrainCameras(self, scale=1.0):
return self.train_cameras[scale]
def getTestCameras(self, scale=1.0):
return self.test_cameras[scale]